2
0
mirror of https://github.com/lightninglabs/loop synced 2024-11-16 00:12:52 +00:00
loop/swap/htlc_test.go

316 lines
7.8 KiB
Go
Raw Normal View History

2020-08-26 09:16:15 +00:00
package swap
import (
"bytes"
"crypto/sha256"
"fmt"
"testing"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightninglabs/loop/test"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/stretchr/testify/require"
)
// assertEngineExecution executes the VM returned by the newEngine closure,
// asserting the result matches the validity expectation. In the case where it
// doesn't match the expectation, it executes the script step-by-step and
// prints debug information to stdout.
// This code is adopted from: lnd/input/script_utils_test.go
func assertEngineExecution(t *testing.T, valid bool,
newEngine func() (*txscript.Engine, error)) {
t.Helper()
// Get a new VM to execute.
vm, err := newEngine()
require.NoError(t, err, "unable to create engine")
// Execute the VM, only go on to the step-by-step execution if it
// doesn't validate as expected.
vmErr := vm.Execute()
executionValid := vmErr == nil
if valid == executionValid {
return
}
// Now that the execution didn't match what we expected, fetch a new VM
// to step through.
vm, err = newEngine()
require.NoError(t, err, "unable to create engine")
// This buffer will trace execution of the Script, dumping out to
// stdout.
var debugBuf bytes.Buffer
done := false
for !done {
dis, err := vm.DisasmPC()
if err != nil {
t.Fatalf("stepping (%v)\n", err)
}
debugBuf.WriteString(fmt.Sprintf("stepping %v\n", dis))
done, err = vm.Step()
if err != nil && valid {
fmt.Println(debugBuf.String())
t.Fatalf("spend test case failed, spend "+
"should be valid: %v", err)
} else if err == nil && !valid && done {
fmt.Println(debugBuf.String())
t.Fatalf("spend test case succeed, spend "+
"should be invalid: %v", err)
}
debugBuf.WriteString(
fmt.Sprintf("Stack: %v", vm.GetStack()),
)
debugBuf.WriteString(
fmt.Sprintf("AltStack: %v", vm.GetAltStack()),
)
}
// If we get to this point the unexpected case was not reached
// during step execution, which happens for some checks, like
// the clean-stack rule.
validity := "invalid"
if valid {
validity = "valid"
}
fmt.Println(debugBuf.String())
t.Fatalf(
"%v spend test case execution ended with: %v", validity, vmErr,
)
}
// TestHtlcV2 tests the HTLC V2 script success and timeout spend cases.
func TestHtlcV2(t *testing.T) {
const (
htlcValue = btcutil.Amount(1 * 10e8)
testCltvExpiry = 24
)
var (
testPreimage = lntypes.Preimage([32]byte{1, 2, 3})
err error
)
// We generate a fake output, and the corresponding txin. This output
// doesn't need to exist, as we'll only be validating spending from the
// transaction that references this.
fundingOut := &wire.OutPoint{
Hash: chainhash.Hash(sha256.Sum256([]byte{1, 2, 3})),
Index: 50,
}
fakeFundingTxIn := wire.NewTxIn(fundingOut, nil, nil)
sweepTx := wire.NewMsgTx(2)
sweepTx.AddTxIn(fakeFundingTxIn)
sweepTx.AddTxOut(
&wire.TxOut{
PkScript: []byte("doesn't matter"),
Value: int64(htlcValue),
},
)
// Create sender and receiver keys.
senderPrivKey, senderPubKey := test.CreateKey(1)
receiverPrivKey, receiverPubKey := test.CreateKey(2)
var (
senderKey [33]byte
receiverKey [33]byte
)
copy(senderKey[:], senderPubKey.SerializeCompressed())
copy(receiverKey[:], receiverPubKey.SerializeCompressed())
hash := sha256.Sum256(testPreimage[:])
// Create the htlc.
htlc, err := NewHtlc(
HtlcV2, testCltvExpiry,
senderKey, receiverKey, hash,
HtlcP2WSH, &chaincfg.MainNetParams,
)
require.NoError(t, err)
// Create the htlc output we'll try to spend.
htlcOutput := &wire.TxOut{
Value: int64(htlcValue),
PkScript: htlc.PkScript,
}
// Create signers for sender and receiver.
senderSigner := &input.MockSigner{
Privkeys: []*btcec.PrivateKey{senderPrivKey},
}
receiverSigner := &input.MockSigner{
Privkeys: []*btcec.PrivateKey{receiverPrivKey},
}
signTx := func(tx *wire.MsgTx, pubkey *btcec.PublicKey,
signer *input.MockSigner) (input.Signature, error) {
signDesc := &input.SignDescriptor{
KeyDesc: keychain.KeyDescriptor{
PubKey: pubkey,
},
WitnessScript: htlc.Script(),
Output: htlcOutput,
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(tx),
InputIndex: 0,
}
return signer.SignOutputRaw(tx, signDesc)
}
testCases := []struct {
name string
witness func(*testing.T) wire.TxWitness
valid bool
}{
{
// Receiver can spend with valid preimage.
"success case spend with valid preimage",
func(t *testing.T) wire.TxWitness {
sweepTx.TxIn[0].Sequence = htlc.SuccessSequence()
sweepSig, err := signTx(
sweepTx, receiverPubKey, receiverSigner,
)
require.NoError(t, err)
witness, err := htlc.GenSuccessWitness(
sweepSig.Serialize(), testPreimage,
)
require.NoError(t, err)
return witness
}, true,
},
{
// Receiver can't spend with the valid preimage and with
// zero sequence.
"success case no spend with valid preimage and zero sequence",
func(t *testing.T) wire.TxWitness {
sweepTx.TxIn[0].Sequence = 0
sweepSig, err := signTx(
sweepTx, receiverPubKey, receiverSigner,
)
require.NoError(t, err)
witness, err := htlc.GenSuccessWitness(
sweepSig.Serialize(), testPreimage,
)
require.NoError(t, err)
return witness
}, false,
},
{
// Sender can't spend when haven't yet timed out.
"timeout case no spend before timeout",
func(t *testing.T) wire.TxWitness {
sweepTx.LockTime = testCltvExpiry - 1
sweepSig, err := signTx(
sweepTx, senderPubKey, senderSigner,
)
require.NoError(t, err)
return htlc.GenTimeoutWitness(
sweepSig.Serialize(),
)
}, false,
},
{
// Sender can spend after timeout.
"timeout case spend after timeout",
func(t *testing.T) wire.TxWitness {
sweepTx.LockTime = testCltvExpiry
sweepSig, err := signTx(
sweepTx, senderPubKey, senderSigner,
)
require.NoError(t, err)
return htlc.GenTimeoutWitness(
sweepSig.Serialize(),
)
}, true,
},
{
// Receiver can't spend after timeout.
"timeout case receiver cannot spend",
func(t *testing.T) wire.TxWitness {
sweepTx.LockTime = testCltvExpiry
sweepSig, err := signTx(
sweepTx, receiverPubKey, receiverSigner,
)
require.NoError(t, err)
return htlc.GenTimeoutWitness(
sweepSig.Serialize(),
)
}, false,
},
{
// Sender can't spend after timeout with wrong sender
// key.
"timeout case cannot spend with wrong key",
func(t *testing.T) wire.TxWitness {
bogusKey := [33]byte{0xb, 0xa, 0xd}
// Create the htlc with the bogus key.
htlc, err = NewHtlc(
HtlcV2, testCltvExpiry,
bogusKey, receiverKey, hash,
HtlcP2WSH, &chaincfg.MainNetParams,
)
require.NoError(t, err)
// Create the htlc output we'll try to spend.
htlcOutput = &wire.TxOut{
Value: int64(htlcValue),
PkScript: htlc.PkScript,
}
sweepTx.LockTime = testCltvExpiry
sweepSig, err := signTx(
sweepTx, senderPubKey, senderSigner,
)
require.NoError(t, err)
return htlc.GenTimeoutWitness(
sweepSig.Serialize(),
)
}, false,
},
}
for _, testCase := range testCases {
testCase := testCase
t.Run(testCase.name, func(t *testing.T) {
sweepTx.TxIn[0].Witness = testCase.witness(t)
newEngine := func() (*txscript.Engine, error) {
return txscript.NewEngine(
htlc.PkScript, sweepTx, 0,
txscript.StandardVerifyFlags, nil,
nil, int64(htlcValue))
}
assertEngineExecution(t, testCase.valid, newEngine)
})
}
}