lokinet/llarp/util/buffer.hpp
Jason Rhinelander 5b555ee5aa Replace libuv with uvw & related refactoring
- removes all the llarp_ev_* functions, replacing with methods/classes/functions in the llarp
  namespace.
- banish ev/ev.h to the void
- Passes various things by const lvalue ref, especially shared_ptr's that don't need to be copied
  (to avoid an atomic refcount increment/decrement).
- Add a llarp::UDPHandle abstract class for UDP handling
- Removes the UDP tick handler; code that needs tick can just do a separate handler on the event
  loop outside the UDP socket.
- Adds an "OwnedBuffer" which owns its own memory but is implicitly convertible to a llarp_buffer_t.
  This is mostly needed to take over ownership of buffers from uvw without copying them as,
  currently, uvw does its own allocation (pending some open upstream issues/PRs).
- Logic:
  - add `make_caller`/`call_forever`/`call_every` utility functions to abstract Call wrapping and
    dependent timed tasks.
  - Add inLogicThread() so that code can tell its inside the logic thread (typically for
    debugging assertions).
  - get rid of janky integer returns and dealing with cancellations on call_later: the other methods
    added here and the event loop code remove the need for them.
- Event loop:
  - redo everything with uvw instead of libuv
  - rename EventLoopWakeup::Wakeup to EventLoopWakeup::Trigger to better reflect what it does.
  - add EventLoopRepeater for repeated events, and replace the code that reschedules itself every
    time it is called with a repeater.
  - Split up `EventLoop::run()` into a non-virtual base method and abstract `run_loop()` methods;
    the base method does a couple extra setup/teardown things that don't need to be in the derived class.
  - udp_listen is replaced with ev->udp(...) which returns a new UDPHandle object rather that
    needing gross C-style-but-not-actually-C-compatible structs.
  - Remove unused register_poll_fd_(un)readable
  - Use shared_ptr for EventLoopWakeup rather than returning a raw pointer; uvw lets us not have to
    worry about having the event loop class maintain ownership of it.
  - Add factory EventLoop::create() function to create a default (uvw-based) event loop (previously
    this was one of the llarp_ev_blahblah unnamespaced functions).
  - ev_libuv: this is mostly rewritten; all of the glue code/structs, in particular, are gone as
    they are no longer needed with uvw.
- DNS:
  - Rename DnsHandler to DnsInterceptor to better describe what it does (this is the code that
    intercepts all DNS to the tun IP range for Android).
- endpoint:
  - remove unused "isolated network" code
  - remove distinct (but actually always the same) variables for router/endpoint logic objects
- llarp_buffer_t
  - make constructors type-safe against being called with points to non-size-1 values
- tun packet reading:
  - read all available packets off the device/file descriptor; previously we were reading one packet
    at a time then returning to the event loop to poll again.
  - ReadNextPacket() now returns a 0-size packet if the read would block (so that we can implement
    the previous point).
  - ReadNextPacket() now throws on I/O error
- Miscellaneous code cleanups/simplifications
2021-03-04 16:51:18 -04:00

276 lines
6.3 KiB
C++

#ifndef LLARP_BUFFER_HPP
#define LLARP_BUFFER_HPP
#include <type_traits>
#include <util/common.hpp>
#include <util/mem.h>
#include <util/types.hpp>
#include <cassert>
#include <iterator>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <utility>
#include <algorithm>
#include <memory>
/**
* buffer.h
*
* generic memory buffer
*
* TODO: replace usage of these with std::span (via a backport until we move to C++20). That's a
* fairly big job, though, as llarp_buffer_t is currently used a bit differently (i.e. maintains
* both start and current position, plus has some value reading/writing methods).
*/
/**
llarp_buffer_t represents a region of memory that is ONLY
valid in the current scope.
make sure to follow the rules:
ALWAYS copy the contents of the buffer if that data is to be used outside the
current scope.
ALWAYS pass a llarp_buffer_t * if you plan on modifying the data associated
with the buffer
ALWAYS pass a llarp_buffer_t * if you plan on advancing the stream position
ALWAYS pass a const llarp_buffer_t & if you are doing a read only operation
that does not modify the buffer
ALWAYS pass a const llarp_buffer_t & if you don't want to advance the stream
position
ALWAYS bail out of the current operation if you run out of space in a buffer
ALWAYS assume the pointers in the buffer are stack allocated memory
(yes even if you know they are not)
NEVER malloc() the pointers in the buffer when using it
NEVER realloc() the pointers in the buffer when using it
NEVER free() the pointers in the buffer when using it
NEVER use llarp_buffer_t ** (double pointers)
NEVER use llarp_buffer_t ** (double pointers)
ABSOLUTELY NEVER USE DOUBLE POINTERS.
*/
struct ManagedBuffer;
struct llarp_buffer_t
{
/// starting memory address
byte_t* base{nullptr};
/// memory address of stream position
byte_t* cur{nullptr};
/// max size of buffer
size_t sz{0};
byte_t operator[](size_t x)
{
return *(this->base + x);
}
llarp_buffer_t() = default;
llarp_buffer_t(byte_t* b, byte_t* c, size_t s) : base(b), cur(c), sz(s)
{}
llarp_buffer_t(const ManagedBuffer&) = delete;
llarp_buffer_t(ManagedBuffer&&) = delete;
/// Construct referencing some 1-byte, trivially copyable (e.g. char, unsigned char, byte_t)
/// pointer type and a buffer size.
template <
typename T,
typename = std::enable_if_t<sizeof(T) == 1 and std::is_trivially_copyable_v<T>>>
llarp_buffer_t(T* buf, size_t _sz)
: base(reinterpret_cast<byte_t*>(const_cast<std::remove_const_t<T>*>(buf)))
, cur(base)
, sz(_sz)
{}
/// initialize llarp_buffer_t from containers supporting .data() and .size()
template <
typename T,
typename = std::void_t<decltype(std::declval<T>().data() + std::declval<T>().size())>>
llarp_buffer_t(T& t) : llarp_buffer_t{t.data(), t.size()}
{}
byte_t*
begin()
{
return base;
}
byte_t*
begin() const
{
return base;
}
byte_t*
end()
{
return base + sz;
}
byte_t*
end() const
{
return base + sz;
}
size_t
size_left() const;
template <typename OutputIt>
bool
read_into(OutputIt begin, OutputIt end);
template <typename InputIt>
bool
write(InputIt begin, InputIt end);
#ifndef _WIN32
bool
writef(const char* fmt, ...) __attribute__((format(printf, 2, 3)));
#elif defined(__MINGW64__) || defined(__MINGW32__)
bool
writef(const char* fmt, ...) __attribute__((__format__(__MINGW_PRINTF_FORMAT, 2, 3)));
#else
bool
writef(const char* fmt, ...);
#endif
bool
put_uint16(uint16_t i);
bool
put_uint32(uint32_t i);
bool
put_uint64(uint64_t i);
bool
read_uint16(uint16_t& i);
bool
read_uint32(uint32_t& i);
bool
read_uint64(uint64_t& i);
size_t
read_until(char delim, byte_t* result, size_t resultlen);
private:
friend struct ManagedBuffer;
llarp_buffer_t(const llarp_buffer_t&) = default;
llarp_buffer_t(llarp_buffer_t&&) = default;
};
bool
operator==(const llarp_buffer_t& buff, const char* data);
template <typename OutputIt>
bool
llarp_buffer_t::read_into(OutputIt begin, OutputIt end)
{
auto dist = std::distance(begin, end);
if (static_cast<decltype(dist)>(size_left()) >= dist)
{
std::copy_n(cur, dist, begin);
cur += dist;
return true;
}
return false;
}
template <typename InputIt>
bool
llarp_buffer_t::write(InputIt begin, InputIt end)
{
auto dist = std::distance(begin, end);
if (static_cast<decltype(dist)>(size_left()) >= dist)
{
cur = std::copy(begin, end, cur);
return true;
}
return false;
}
/**
Provide a copyable/moveable wrapper around `llarp_buffer_t`.
*/
struct ManagedBuffer
{
llarp_buffer_t underlying;
ManagedBuffer() = delete;
explicit ManagedBuffer(const llarp_buffer_t& b) : underlying(b)
{}
ManagedBuffer(ManagedBuffer&&) = default;
ManagedBuffer(const ManagedBuffer&) = default;
operator const llarp_buffer_t&() const
{
return underlying;
}
};
namespace llarp
{
// Wrapper around a std::unique_ptr<byte_t[]> that owns its own memory and is also implicitly
// convertible to a llarp_buffer_t.
struct OwnedBuffer
{
std::unique_ptr<byte_t[]> buf;
size_t sz;
template <typename T, typename = std::enable_if_t<sizeof(T) == 1>>
OwnedBuffer(std::unique_ptr<T[]> buf, size_t sz)
: buf{reinterpret_cast<byte_t*>(buf.release())}, sz{sz}
{}
// Create a new, uninitialized owned buffer of the given size.
explicit OwnedBuffer(size_t sz) : OwnedBuffer{std::make_unique<byte_t[]>(sz), sz}
{}
OwnedBuffer(const OwnedBuffer&) = delete;
OwnedBuffer&
operator=(const OwnedBuffer&) = delete;
OwnedBuffer(OwnedBuffer&&) = default;
OwnedBuffer&
operator=(OwnedBuffer&&) = delete;
// Implicit conversion so that this OwnedBuffer can be passed to anything taking a
// llarp_buffer_t
operator llarp_buffer_t()
{
return {buf.get(), sz};
}
// Creates an owned buffer by copying from a llarp_buffer_t. (Can also be used to copy from
// another OwnedBuffer via the implicit conversion operator above).
static OwnedBuffer
copy_from(const llarp_buffer_t& b);
// Creates an owned buffer by copying the used portion of a llarp_buffer_t (i.e. from base to
// cur), for when a llarp_buffer_t is used in write mode.
static OwnedBuffer
copy_used(const llarp_buffer_t& b);
};
} // namespace llarp
#endif