mirror of
https://github.com/oxen-io/lokinet.git
synced 2024-11-15 12:13:24 +00:00
860c5efd47
The reason things weren't working here is because libsodium does something completely unintuitive and called the seed the "secret key" when it isn't, it's the seed. This adds a new PrivateKey class (alongside the existing SecretKey and PubKey) that holds just a private key value but no seed -- which we need to do because there is no way we can get a seed after calculating a derived keypair. With these changes, we now generate exactly the same keys and subkeys as Tor (and a new test case uses values generated in Tor to verify this). This is incomplete -- the subkey signing code is still not implemented; it has to be adapted to create a signature from a PrivateKey rather than a SecretKey which will probably requiring working around/reimplementing some of what libsodium does for creating a signature since it expects "secret keys" i.e. the seed.
253 lines
7.3 KiB
C++
253 lines
7.3 KiB
C++
#include <crypto/crypto.hpp>
|
|
#include <crypto/crypto_libsodium.hpp>
|
|
#include <sodium/crypto_scalarmult_ed25519.h>
|
|
#include <llarp_test.hpp>
|
|
#include <path/path.hpp>
|
|
#include <service/address.hpp>
|
|
#include <service/identity.hpp>
|
|
#include <service/intro_set.hpp>
|
|
#include <util/time.hpp>
|
|
|
|
#include <crypto/mock_crypto.hpp>
|
|
#include <test_util.hpp>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <gmock/gmock.h>
|
|
|
|
using namespace llarp;
|
|
using namespace testing;
|
|
|
|
struct HiddenServiceTest : public test::LlarpTest<>
|
|
{
|
|
service::Identity ident;
|
|
};
|
|
|
|
TEST_F(HiddenServiceTest, TestGenerateIntroSet)
|
|
{
|
|
service::Address addr;
|
|
ASSERT_TRUE(ident.pub.CalculateAddress(addr.as_array()));
|
|
service::IntroSet I;
|
|
auto now = time_now_ms();
|
|
I.T = now;
|
|
while(I.I.size() < 10)
|
|
{
|
|
service::Introduction intro;
|
|
intro.expiresAt = now + (path::default_lifetime / 2);
|
|
intro.router.Randomize();
|
|
intro.pathID.Randomize();
|
|
I.I.emplace_back(std::move(intro));
|
|
}
|
|
|
|
EXPECT_CALL(m_crypto, sign(I.Z, _, _)).WillOnce(Return(true));
|
|
EXPECT_CALL(m_crypto, verify(_, _, I.Z)).WillOnce(Return(true));
|
|
EXPECT_CALL(m_crypto, xchacha20(_, _, _)).WillOnce(Return(true));
|
|
const auto maybe = ident.EncryptAndSignIntroSet(I, now);
|
|
ASSERT_TRUE(maybe.has_value());
|
|
ASSERT_TRUE(maybe->Verify(now));
|
|
}
|
|
|
|
TEST_F(HiddenServiceTest, TestAddressToFromString)
|
|
{
|
|
auto str = ident.pub.Addr().ToString();
|
|
service::Address addr;
|
|
ASSERT_TRUE(addr.FromString(str));
|
|
ASSERT_TRUE(addr == ident.pub.Addr());
|
|
}
|
|
|
|
struct ServiceIdentityTest : public test::LlarpTest<>
|
|
{
|
|
ServiceIdentityTest()
|
|
{
|
|
}
|
|
};
|
|
|
|
template < typename Arg >
|
|
std::function< void(Arg&) >
|
|
FillArg(byte_t val)
|
|
{
|
|
return [=](Arg& arg) { arg.Fill(val); };
|
|
}
|
|
|
|
TEST_F(ServiceIdentityTest, EnsureKeys)
|
|
{
|
|
fs::path p = test::randFilename();
|
|
ASSERT_FALSE(fs::exists(fs::status(p)));
|
|
|
|
test::FileGuard guard(p);
|
|
|
|
const SecretKey k;
|
|
|
|
EXPECT_CALL(m_crypto, derive_subkey_private(_, _, _, _))
|
|
.WillRepeatedly(Return(true));
|
|
|
|
EXPECT_CALL(m_crypto, identity_keygen(_))
|
|
.WillOnce(WithArg< 0 >(FillArg< SecretKey >(0x02)));
|
|
|
|
EXPECT_CALL(m_crypto, pqe_keygen(_))
|
|
.WillOnce(WithArg< 0 >(FillArg< PQKeyPair >(0x03)));
|
|
|
|
service::Identity identity;
|
|
ASSERT_TRUE(identity.EnsureKeys(p.string(), false));
|
|
ASSERT_TRUE(fs::exists(fs::status(p)));
|
|
|
|
// Verify what is on disk is what is what was generated
|
|
service::Identity other;
|
|
// No need to set more mocks, as we shouldn't need to re-keygen
|
|
ASSERT_TRUE(other.EnsureKeys(p.string(), false));
|
|
ASSERT_EQ(identity, other);
|
|
}
|
|
|
|
TEST_F(ServiceIdentityTest, EnsureKeysDir)
|
|
{
|
|
fs::path p = test::randFilename();
|
|
ASSERT_FALSE(fs::exists(fs::status(p)));
|
|
|
|
test::FileGuard guard(p);
|
|
std::error_code code;
|
|
ASSERT_TRUE(fs::create_directory(p, code)) << code;
|
|
|
|
service::Identity identity;
|
|
ASSERT_FALSE(identity.EnsureKeys(p.string(), false));
|
|
}
|
|
|
|
TEST_F(ServiceIdentityTest, EnsureKeysBrokenFile)
|
|
{
|
|
fs::path p = test::randFilename();
|
|
ASSERT_FALSE(fs::exists(fs::status(p)));
|
|
|
|
test::FileGuard guard(p);
|
|
std::error_code code;
|
|
|
|
std::fstream file;
|
|
file.open(p.string(), std::ios::out);
|
|
ASSERT_TRUE(file.is_open()) << p;
|
|
file.close();
|
|
|
|
service::Identity identity;
|
|
ASSERT_FALSE(identity.EnsureKeys(p.string(), false));
|
|
}
|
|
|
|
struct RealCryptographyTest : public ::testing::Test
|
|
{
|
|
std::unique_ptr< CryptoManager > _manager;
|
|
|
|
void
|
|
SetUp()
|
|
{
|
|
_manager = std::make_unique< CryptoManager >(new sodium::CryptoLibSodium());
|
|
}
|
|
|
|
void
|
|
TearDown()
|
|
{
|
|
_manager.reset();
|
|
}
|
|
};
|
|
|
|
TEST_F(RealCryptographyTest, TestKnownDerivation)
|
|
{
|
|
// These values came out of Tor's test code, so that we can confirm we are doing the same blinding
|
|
// subkey crypto math as Tor. Our hash value is generated differently so we use the hash from a
|
|
// Tor random test suite run.
|
|
|
|
AlignedBuffer<32> seed{{
|
|
0x11, 0x68, 0xae, 0xa6, 0x62, 0x26, 0x6c, 0x53, 0x69, 0x9f, 0xe7, 0xd9, 0xbb, 0xff, 0xf6, 0x8e,
|
|
0x58, 0x22, 0xde, 0x90, 0x4b, 0x91, 0x28, 0x5a, 0x7c, 0x41, 0xcc, 0x7c, 0x36, 0xb4, 0xf5, 0xa0 }};
|
|
AlignedBuffer<32> root_key_data{{
|
|
0x40, 0x64, 0x32, 0x11, 0x19, 0xfc, 0xe8, 0x27, 0x9d, 0x3f, 0xd6, 0xe9, 0xc8, 0x4c, 0x5a, 0xea,
|
|
0x32, 0xd4, 0xe3, 0x97, 0x4a, 0xe4, 0x00, 0xd0, 0xd8, 0x36, 0xc2, 0x0e, 0xe4, 0xa2, 0x7c, 0x6c }};
|
|
AlignedBuffer<32> root_pub_data{{
|
|
0x69, 0x8b, 0x43, 0xbb, 0x54, 0xeb, 0x31, 0x2e, 0x5a, 0x07, 0x3f, 0x59, 0x5f, 0x1a, 0xbf, 0xe3,
|
|
0x95, 0xf2, 0x7a, 0x6d, 0x1d, 0x64, 0x5c, 0x4b, 0x10, 0x3f, 0xa2, 0xf5, 0xe6, 0x97, 0x5c, 0x70 }};
|
|
AlignedBuffer<32> hash{{
|
|
0x22, 0x41, 0xca, 0x66, 0x21, 0x4c, 0x75, 0x40, 0x65, 0x57, 0x9e, 0x81, 0x8c, 0x70, 0x15, 0x2a,
|
|
0x71, 0xb6, 0xc1, 0x67, 0x3f, 0x3b, 0x4b, 0x22, 0x31, 0xed, 0x22, 0x30, 0x2e, 0x2a, 0x23, 0x8e }};
|
|
AlignedBuffer<32> derived_key_data{{
|
|
0xbd, 0x0c, 0x55, 0x32, 0x62, 0x89, 0x61, 0xea, 0x86, 0x10, 0xd2, 0x27, 0x18, 0x51, 0xc0, 0x5e,
|
|
0x0e, 0xb1, 0x5a, 0x45, 0xb7, 0xb6, 0x16, 0xbe, 0x37, 0xba, 0x9a, 0x34, 0x39, 0xc4, 0xd0, 0x07 }};
|
|
AlignedBuffer<32> derived_pub_data{{
|
|
0xa0, 0x72, 0x62, 0x22, 0xd7, 0xc0, 0x91, 0x49, 0xe5, 0xe7, 0x86, 0x0d, 0xc1, 0x53, 0x14, 0x02,
|
|
0xe9, 0x96, 0xb8, 0xd8, 0x93, 0xb9, 0x2f, 0xe9, 0xc8, 0xf6, 0xf0, 0x5d, 0xe2, 0x30, 0x06, 0x48 }};
|
|
|
|
SecretKey root{seed};
|
|
ASSERT_EQ(root.toPublic(), PubKey{root_pub_data});
|
|
|
|
PrivateKey root_key;
|
|
ASSERT_TRUE(root.toPrivate(root_key));
|
|
ASSERT_EQ(root_key, PrivateKey{root_key_data});
|
|
|
|
auto crypto = CryptoManager::instance();
|
|
|
|
PrivateKey aprime; // a'
|
|
ASSERT_TRUE(crypto->derive_subkey_private(aprime, root, 0, &hash));
|
|
ASSERT_EQ(aprime, PrivateKey{derived_key_data});
|
|
|
|
PubKey Aprime; // A'
|
|
ASSERT_TRUE(crypto->derive_subkey(Aprime, root.toPublic(), 0, &hash));
|
|
ASSERT_EQ(Aprime, PubKey{derived_pub_data});
|
|
}
|
|
|
|
TEST_F(RealCryptographyTest, TestGenerateDeriveKey)
|
|
{
|
|
auto crypto = CryptoManager::instance();
|
|
SecretKey root_key;
|
|
crypto->identity_keygen(root_key);
|
|
|
|
PrivateKey root_privkey;
|
|
ASSERT_TRUE(root_key.toPrivate(root_privkey));
|
|
|
|
PrivateKey a;
|
|
PubKey A;
|
|
ASSERT_TRUE(root_key.toPrivate(a));
|
|
ASSERT_TRUE(a.toPublic(A));
|
|
ASSERT_EQ(A, root_key.toPublic());
|
|
|
|
{
|
|
// paranoid check to ensure this works as expected
|
|
PubKey aB;
|
|
crypto_scalarmult_ed25519_base(aB.data(), a.data());
|
|
ASSERT_EQ(A, aB);
|
|
}
|
|
|
|
PrivateKey aprime; // a'
|
|
ASSERT_TRUE(crypto->derive_subkey_private(aprime, root_key, 1));
|
|
|
|
PubKey Aprime; // A'
|
|
ASSERT_TRUE(crypto->derive_subkey(Aprime, A, 1));
|
|
|
|
// We should also be able to derive A' via a':
|
|
PubKey Aprime_alt;
|
|
ASSERT_TRUE(aprime.toPublic(Aprime_alt));
|
|
|
|
ASSERT_EQ(Aprime, Aprime_alt);
|
|
}
|
|
|
|
TEST_F(RealCryptographyTest, TestEncryptAndSignIntroSet)
|
|
{
|
|
service::Identity ident;
|
|
ident.RegenerateKeys();
|
|
service::Address addr;
|
|
ASSERT_TRUE(ident.pub.CalculateAddress(addr.as_array()));
|
|
service::IntroSet I;
|
|
auto now = time_now_ms();
|
|
I.T = now;
|
|
while(I.I.size() < 10)
|
|
{
|
|
service::Introduction intro;
|
|
intro.expiresAt = now + (path::default_lifetime / 2);
|
|
intro.router.Randomize();
|
|
intro.pathID.Randomize();
|
|
I.I.emplace_back(std::move(intro));
|
|
}
|
|
|
|
const auto maybe = ident.EncryptAndSignIntroSet(I, now);
|
|
ASSERT_TRUE(maybe.has_value());
|
|
llarp::LogInfo("introset=", maybe.value());
|
|
ASSERT_TRUE(maybe->Verify(now));
|
|
PubKey blind_key;
|
|
const PubKey root_key(addr.as_array());
|
|
auto crypto = CryptoManager::instance();
|
|
ASSERT_TRUE(crypto->derive_subkey(blind_key, root_key, 1));
|
|
ASSERT_EQ(blind_key, root_key);
|
|
}
|