lokinet/llarp/nodedb.hpp
Jason Rhinelander b4440094b0 De-abseil, part 2: mutex, locks, (most) time
- util::Mutex is now a std::shared_timed_mutex, which is capable of
  exclusive and shared locks.

- util::Lock is still present as a std::lock_guard<util::Mutex>.

- the locking annotations are preserved, but updated to the latest
  supported by clang rather than using abseil's older/deprecated ones.

- ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into
  locks anymore (WTF abseil).

- ReleasableLock is gone.  Instead there are now some llarp::util helper
  methods to obtain unique and/or shared locks:
    - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also
      unlockable object (std::unique_lock<T>, with T inferred from
      `mutex`).
    - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e.
      "reader") lock of the mutex.
    - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be
      used to atomically lock multiple mutexes at once (returning a
      tuple of the locks).
  This are templated on the mutex which makes them a bit more flexible
  than using a concrete type: they can be used for any type of lockable
  mutex, not only util::Mutex.  (Some of the code here uses them for
  getting locks around a std::mutex).  Until C++17, using the RAII types
  is painfully verbose:

  ```C++
  // pre-C++17 - needing to figure out the mutex type here is annoying:
  std::unique_lock<util::Mutex> lock(mutex);
  // pre-C++17 and even more verbose (but at least the type isn't needed):
  std::unique_lock<decltype(mutex)> lock(mutex);
  // our compromise:
  auto lock = util::unique_lock(mutex);
  // C++17:
  std::unique_lock lock(mutex);
  ```

  All of these functions will also warn (under gcc or clang) if you
  discard the return value.  You can also do fancy things like
  `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a
  lock take over an already-locked mutex).

- metrics code is gone, which also removes a big pile of code that was
  only used by metrics:
  - llarp::util::Scheduler
  - llarp:🧵:TimerQueue
  - llarp::util::Stopwatch
2020-02-21 23:22:47 -04:00

246 lines
5.7 KiB
C++

#ifndef LLARP_NODEDB_HPP
#define LLARP_NODEDB_HPP
#include <router_contact.hpp>
#include <router_id.hpp>
#include <util/common.hpp>
#include <util/fs.hpp>
#include <util/thread/threading.hpp>
#include <util/thread/annotations.hpp>
#include <dht/key.hpp>
#include <set>
#include <utility>
/**
* nodedb.hpp
*
* persistent storage API for router contacts
*/
struct llarp_threadpool;
namespace llarp
{
class Logic;
namespace thread
{
class ThreadPool;
}
} // namespace llarp
struct llarp_nodedb_iter
{
void *user;
llarp::RouterContact *rc;
size_t index;
bool (*visit)(struct llarp_nodedb_iter *);
};
struct llarp_nodedb
{
explicit llarp_nodedb(std::shared_ptr< llarp::thread::ThreadPool > diskworker,
const std::string rootdir)
: disk(std::move(diskworker)), nodePath(rootdir)
{
}
~llarp_nodedb()
{
Clear();
}
std::shared_ptr< llarp::thread::ThreadPool > disk;
mutable llarp::util::Mutex access; // protects entries
/// time for next save to disk event, 0 if never happened
llarp_time_t m_NextSaveToDisk = 0;
/// how often to save to disk
const llarp_time_t m_SaveInterval = 60 * 5 * 1000;
struct NetDBEntry
{
const llarp::RouterContact rc;
llarp_time_t inserted;
NetDBEntry(llarp::RouterContact data);
};
using NetDBMap_t =
std::unordered_map< llarp::RouterID, NetDBEntry, llarp::RouterID::Hash >;
NetDBMap_t entries GUARDED_BY(access);
fs::path nodePath;
llarp::RouterContact
FindClosestTo(const llarp::dht::Key_t &location);
/// find the $numRouters closest routers to the given DHT key
std::vector< llarp::RouterContact >
FindClosestTo(const llarp::dht::Key_t &location, uint32_t numRouters);
/// return true if we should save our nodedb to disk
bool
ShouldSaveToDisk(llarp_time_t now = 0) const;
bool
Remove(const llarp::RouterID &pk) EXCLUDES(access);
void
RemoveIf(std::function< bool(const llarp::RouterContact &) > filter)
EXCLUDES(access);
void
Clear() EXCLUDES(access);
bool
Get(const llarp::RouterID &pk, llarp::RouterContact &result) EXCLUDES(access);
bool
Has(const llarp::RouterID &pk) EXCLUDES(access);
std::string
getRCFilePath(const llarp::RouterID &pubkey) const;
/// insert without writing to disk
bool
Insert(const llarp::RouterContact &rc) EXCLUDES(access);
/// invokes Insert() asynchronously with an optional completion
/// callback
void
InsertAsync(llarp::RouterContact rc,
std::shared_ptr< llarp::Logic > l = nullptr,
std::function< void(void) > completionHandler = nullptr);
/// update rc if newer
/// return true if we started to put this rc in the database
/// retur false if not newer
bool
UpdateAsyncIfNewer(llarp::RouterContact rc,
std::shared_ptr< llarp::Logic > l = nullptr,
std::function< void(void) > completionHandler = nullptr)
EXCLUDES(access);
ssize_t
Load(const fs::path &path);
ssize_t
loadSubdir(const fs::path &dir);
/// save all entries to disk async
void
AsyncFlushToDisk();
bool
loadfile(const fs::path &fpath) EXCLUDES(access);
void
visit(std::function< bool(const llarp::RouterContact &) > visit)
EXCLUDES(access);
void
set_dir(const char *dir);
ssize_t
LoadAll();
ssize_t
store_dir(const char *dir);
/// visit all entries inserted into nodedb cache before a timestamp
void
VisitInsertedBefore(std::function< void(const llarp::RouterContact &) > visit,
llarp_time_t insertedAfter) EXCLUDES(access);
void
RemoveStaleRCs(const std::set< llarp::RouterID > &keep, llarp_time_t cutoff);
size_t
num_loaded() const EXCLUDES(access);
bool
select_random_exit(llarp::RouterContact &rc) EXCLUDES(access);
bool
select_random_hop(const llarp::RouterContact &prev,
llarp::RouterContact &result, size_t N) EXCLUDES(access);
bool
select_random_hop_excluding(llarp::RouterContact &result,
const std::set< llarp::RouterID > &exclude)
EXCLUDES(access);
static bool
ensure_dir(const char *dir);
void
SaveAll() EXCLUDES(access);
};
/// struct for async rc verification
struct llarp_async_verify_rc;
using llarp_async_verify_rc_hook_func =
std::function< void(struct llarp_async_verify_rc *) >;
/// verify rc request
struct llarp_async_verify_rc
{
/// async_verify_context
void *user;
/// nodedb storage
llarp_nodedb *nodedb;
// llarp::Logic for queue_job
std::shared_ptr< llarp::Logic > logic;
std::shared_ptr< llarp::thread::ThreadPool > cryptoworker;
std::shared_ptr< llarp::thread::ThreadPool > diskworker;
/// router contact
llarp::RouterContact rc;
/// result
bool valid;
/// hook
llarp_async_verify_rc_hook_func hook;
};
/**
struct for async rc verification
data is loaded in disk io threadpool
crypto is done on the crypto worker threadpool
result is called on the logic thread
*/
void
llarp_nodedb_async_verify(struct llarp_async_verify_rc *job);
struct llarp_async_load_rc;
using llarp_async_load_rc_hook_func =
std::function< void(struct llarp_async_load_rc *) >;
struct llarp_async_load_rc
{
/// async_verify_context
void *user;
/// nodedb storage
llarp_nodedb *nodedb;
/// llarp::Logic for calling hook
llarp::Logic *logic;
/// disk worker threadpool
llarp::thread::ThreadPool *diskworker;
/// target pubkey
llarp::PubKey pubkey;
/// router contact result
llarp::RouterContact result;
/// set to true if we loaded the rc
bool loaded;
/// hook function called in logic thread
llarp_async_load_rc_hook_func hook;
};
/// asynchronously load an rc from disk
void
llarp_nodedb_async_load_rc(struct llarp_async_load_rc *job);
#endif