lokinet/llarp/path/transit_hop.cpp
2021-06-08 14:36:33 -04:00

470 lines
13 KiB
C++

#include "path.hpp"
#include <llarp/dht/context.hpp>
#include <llarp/exit/context.hpp>
#include <llarp/exit/exit_messages.hpp>
#include <llarp/link/i_link_manager.hpp>
#include <llarp/messages/discard.hpp>
#include <llarp/messages/relay_commit.hpp>
#include <llarp/messages/relay_status.hpp>
#include "path_context.hpp"
#include "transit_hop.hpp"
#include <llarp/router/abstractrouter.hpp>
#include <llarp/routing/path_latency_message.hpp>
#include <llarp/routing/path_transfer_message.hpp>
#include <llarp/routing/handler.hpp>
#include <llarp/util/buffer.hpp>
#include <llarp/util/endian.hpp>
namespace llarp
{
namespace path
{
std::ostream&
TransitHopInfo::print(std::ostream& stream, int level, int spaces) const
{
Printer printer(stream, level, spaces);
printer.printAttribute("tx", txID);
printer.printAttribute("rx", rxID);
printer.printAttribute("upstream", upstream);
printer.printAttribute("downstream", downstream);
return stream;
}
TransitHop::TransitHop()
: m_UpstreamGather(transit_hop_queue_size), m_DownstreamGather(transit_hop_queue_size)
{
m_UpstreamGather.enable();
m_DownstreamGather.enable();
m_UpstreamWorkCounter = 0;
m_DownstreamWorkCounter = 0;
}
bool
TransitHop::Expired(llarp_time_t now) const
{
return destroy || (now >= ExpireTime());
}
llarp_time_t
TransitHop::ExpireTime() const
{
return started + lifetime;
}
bool
TransitHop::HandleLRSM(
uint64_t status, std::array<EncryptedFrame, 8>& frames, AbstractRouter* r)
{
auto msg = std::make_shared<LR_StatusMessage>(frames);
msg->status = status;
msg->pathid = info.rxID;
// TODO: add to IHopHandler some notion of "path status"
const uint64_t ourStatus = LR_StatusRecord::SUCCESS;
msg->AddFrame(pathKey, ourStatus);
LR_StatusMessage::QueueSendMessage(r, info.downstream, msg, shared_from_this());
return true;
}
TransitHopInfo::TransitHopInfo(const RouterID& down, const LR_CommitRecord& record)
: txID(record.txid), rxID(record.rxid), upstream(record.nextHop), downstream(down)
{}
bool
TransitHop::SendRoutingMessage(const routing::IMessage& msg, AbstractRouter* r)
{
if (!IsEndpoint(r->pubkey()))
return false;
std::array<byte_t, MAX_LINK_MSG_SIZE - 128> tmp;
llarp_buffer_t buf(tmp);
if (!msg.BEncode(&buf))
{
llarp::LogError("failed to encode routing message");
return false;
}
TunnelNonce N;
N.Randomize();
buf.sz = buf.cur - buf.base;
// pad to nearest MESSAGE_PAD_SIZE bytes
auto dlt = buf.sz % pad_size;
if (dlt)
{
dlt = pad_size - dlt;
// randomize padding
CryptoManager::instance()->randbytes(buf.cur, dlt);
buf.sz += dlt;
}
buf.cur = buf.base;
return HandleDownstream(buf, N, r);
}
void
TransitHop::DownstreamWork(TrafficQueue_ptr msgs, AbstractRouter* r)
{
auto flushIt = [self = shared_from_this(), r]() {
std::vector<RelayDownstreamMessage> msgs;
while (auto maybe = self->m_DownstreamGather.tryPopFront())
{
msgs.push_back(*maybe);
}
self->HandleAllDownstream(std::move(msgs), r);
};
for (auto& ev : *msgs)
{
RelayDownstreamMessage msg;
const llarp_buffer_t buf(ev.first);
msg.pathid = info.rxID;
msg.Y = ev.second ^ nonceXOR;
CryptoManager::instance()->xchacha20(buf, pathKey, ev.second);
msg.X = buf;
llarp::LogDebug(
"relay ",
msg.X.size(),
" bytes downstream from ",
info.upstream,
" to ",
info.downstream);
if (m_DownstreamGather.full())
{
r->loop()->call(flushIt);
}
if (m_DownstreamGather.enabled())
m_DownstreamGather.pushBack(msg);
}
r->loop()->call(flushIt);
}
void
TransitHop::UpstreamWork(TrafficQueue_ptr msgs, AbstractRouter* r)
{
auto flushIt = [self = shared_from_this(), r]() {
std::vector<RelayUpstreamMessage> msgs;
while (auto maybe = self->m_UpstreamGather.tryPopFront())
{
msgs.push_back(*maybe);
}
self->HandleAllUpstream(std::move(msgs), r);
};
for (auto& ev : *msgs)
{
const llarp_buffer_t buf(ev.first);
RelayUpstreamMessage msg;
CryptoManager::instance()->xchacha20(buf, pathKey, ev.second);
msg.pathid = info.txID;
msg.Y = ev.second ^ nonceXOR;
msg.X = buf;
if (m_UpstreamGather.full())
{
r->loop()->call(flushIt);
}
if (m_UpstreamGather.enabled())
m_UpstreamGather.pushBack(msg);
}
r->loop()->call(flushIt);
}
void
TransitHop::HandleAllUpstream(std::vector<RelayUpstreamMessage> msgs, AbstractRouter* r)
{
if (IsEndpoint(r->pubkey()))
{
for (const auto& msg : msgs)
{
const llarp_buffer_t buf(msg.X);
if (!r->ParseRoutingMessageBuffer(buf, this, info.rxID))
{
LogWarn("invalid upstream data on endpoint ", info);
}
m_LastActivity = r->Now();
}
FlushDownstream(r);
for (const auto& other : m_FlushOthers)
{
other->FlushDownstream(r);
}
m_FlushOthers.clear();
r->loop()->wakeup();
}
else
{
for (const auto& msg : msgs)
{
llarp::LogDebug(
"relay ",
msg.X.size(),
" bytes upstream from ",
info.downstream,
" to ",
info.upstream);
r->SendToOrQueue(info.upstream, msg);
}
r->linkManager().PumpLinks();
}
}
void
TransitHop::HandleAllDownstream(std::vector<RelayDownstreamMessage> msgs, AbstractRouter* r)
{
for (const auto& msg : msgs)
{
llarp::LogDebug(
"relay ",
msg.X.size(),
" bytes downstream from ",
info.upstream,
" to ",
info.downstream);
r->SendToOrQueue(info.downstream, msg);
}
r->linkManager().PumpLinks();
}
void
TransitHop::FlushUpstream(AbstractRouter* r)
{
if (m_UpstreamQueue && not m_UpstreamQueue->empty())
{
r->QueueWork([self = shared_from_this(), data = std::move(m_UpstreamQueue), r]() mutable {
self->UpstreamWork(std::move(data), r);
});
}
m_UpstreamQueue = nullptr;
}
void
TransitHop::FlushDownstream(AbstractRouter* r)
{
if (m_DownstreamQueue && not m_DownstreamQueue->empty())
{
r->QueueWork([self = shared_from_this(), data = std::move(m_DownstreamQueue), r]() mutable {
self->DownstreamWork(std::move(data), r);
});
}
m_DownstreamQueue = nullptr;
}
/// this is where a DHT message is handled at the end of a path, that is,
/// where a SNode receives a DHT message from a client along a path.
bool
TransitHop::HandleDHTMessage(const llarp::dht::IMessage& msg, AbstractRouter* r)
{
return r->dht()->impl->RelayRequestForPath(info.rxID, msg);
}
bool
TransitHop::HandlePathLatencyMessage(
const llarp::routing::PathLatencyMessage& msg, AbstractRouter* r)
{
llarp::routing::PathLatencyMessage reply;
reply.L = msg.T;
reply.S = msg.S;
return SendRoutingMessage(reply, r);
}
bool
TransitHop::HandlePathConfirmMessage(
[[maybe_unused]] const llarp::routing::PathConfirmMessage& msg,
[[maybe_unused]] AbstractRouter* r)
{
llarp::LogWarn("unwarranted path confirm message on ", info);
return false;
}
bool
TransitHop::HandleDataDiscardMessage(
[[maybe_unused]] const llarp::routing::DataDiscardMessage& msg,
[[maybe_unused]] AbstractRouter* r)
{
llarp::LogWarn("unwarranted path data discard message on ", info);
return false;
}
bool
TransitHop::HandleObtainExitMessage(
const llarp::routing::ObtainExitMessage& msg, AbstractRouter* r)
{
if (msg.Verify() && r->exitContext().ObtainNewExit(msg.I, info.rxID, msg.E != 0))
{
llarp::routing::GrantExitMessage grant;
grant.S = NextSeqNo();
grant.T = msg.T;
if (!grant.Sign(r->identity()))
{
llarp::LogError("Failed to sign grant exit message");
return false;
}
return SendRoutingMessage(grant, r);
}
// TODO: exponential backoff
// TODO: rejected policies
llarp::routing::RejectExitMessage reject;
reject.S = NextSeqNo();
reject.T = msg.T;
if (!reject.Sign(r->identity()))
{
llarp::LogError("Failed to sign reject exit message");
return false;
}
return SendRoutingMessage(reject, r);
}
bool
TransitHop::HandleCloseExitMessage(
const llarp::routing::CloseExitMessage& msg, AbstractRouter* r)
{
const llarp::routing::DataDiscardMessage discard(info.rxID, msg.S);
auto ep = r->exitContext().FindEndpointForPath(info.rxID);
if (ep && msg.Verify(ep->PubKey()))
{
llarp::routing::CloseExitMessage reply;
reply.Y = msg.Y;
reply.S = NextSeqNo();
if (reply.Sign(r->identity()))
{
if (SendRoutingMessage(reply, r))
{
ep->Close();
return true;
}
}
}
return SendRoutingMessage(discard, r);
}
bool
TransitHop::HandleUpdateExitVerifyMessage(
const llarp::routing::UpdateExitVerifyMessage& msg, AbstractRouter* r)
{
(void)msg;
(void)r;
llarp::LogError("unwarranted exit verify on ", info);
return false;
}
bool
TransitHop::HandleUpdateExitMessage(
const llarp::routing::UpdateExitMessage& msg, AbstractRouter* r)
{
auto ep = r->exitContext().FindEndpointForPath(msg.P);
if (ep)
{
if (!msg.Verify(ep->PubKey()))
return false;
if (ep->UpdateLocalPath(info.rxID))
{
llarp::routing::UpdateExitVerifyMessage reply;
reply.T = msg.T;
reply.S = NextSeqNo();
return SendRoutingMessage(reply, r);
}
}
// on fail tell message was discarded
llarp::routing::DataDiscardMessage discard(info.rxID, msg.S);
return SendRoutingMessage(discard, r);
}
bool
TransitHop::HandleRejectExitMessage(
const llarp::routing::RejectExitMessage& msg, AbstractRouter* r)
{
(void)msg;
(void)r;
llarp::LogError(info, " got unwarranted RXM");
return false;
}
bool
TransitHop::HandleGrantExitMessage(
const llarp::routing::GrantExitMessage& msg, AbstractRouter* r)
{
(void)msg;
(void)r;
llarp::LogError(info, " got unwarranted GXM");
return false;
}
bool
TransitHop::HandleTransferTrafficMessage(
const llarp::routing::TransferTrafficMessage& msg, AbstractRouter* r)
{
auto endpoint = r->exitContext().FindEndpointForPath(info.rxID);
if (endpoint)
{
bool sent = true;
for (const auto& pkt : msg.X)
{
// check short packet buffer
if (pkt.size() <= 8)
continue;
uint64_t counter = bufbe64toh(pkt.data());
sent &= endpoint->QueueOutboundTraffic(
info.rxID,
ManagedBuffer(llarp_buffer_t(pkt.data() + 8, pkt.size() - 8)),
counter,
msg.protocol);
}
return sent;
}
llarp::LogError("No exit endpoint on ", info);
// discarded
llarp::routing::DataDiscardMessage discard(info.rxID, msg.S);
return SendRoutingMessage(discard, r);
}
bool
TransitHop::HandlePathTransferMessage(
const llarp::routing::PathTransferMessage& msg, AbstractRouter* r)
{
auto path = r->pathContext().GetPathForTransfer(msg.P);
llarp::routing::DataDiscardMessage discarded{msg.P, msg.S};
if (path == nullptr || msg.T.F != info.txID)
{
return SendRoutingMessage(discarded, r);
}
// send routing message
if (path->SendRoutingMessage(msg.T, r))
{
m_FlushOthers.emplace(path);
return true;
}
return SendRoutingMessage(discarded, r);
}
std::ostream&
TransitHop::print(std::ostream& stream, int level, int spaces) const
{
Printer printer(stream, level, spaces);
printer.printAttribute("TransitHop", info);
printer.printAttribute("started", started.count());
printer.printAttribute("lifetime", lifetime.count());
return stream;
}
void
TransitHop::Stop()
{
m_UpstreamGather.disable();
m_DownstreamGather.disable();
}
void
TransitHop::SetSelfDestruct()
{
destroy = true;
}
void
TransitHop::QueueDestroySelf(AbstractRouter* r)
{
r->loop()->call([self = shared_from_this()] { self->SetSelfDestruct(); });
}
} // namespace path
} // namespace llarp