lokinet/llarp/crypto/crypto.hpp

182 lines
4.5 KiB
C++

#pragma once
#include "constants.hpp"
#include "types.hpp"
#include <llarp/util/buffer.hpp>
#include <functional>
#include <cstdint>
/**
* crypto.hpp
*
* libsodium abstraction layer
* potentially allow libssl support in the future
*/
namespace llarp
{
/// library crypto configuration
struct Crypto
{
virtual ~Crypto() = 0;
/// decrypt cipherText name given the key generated from name
virtual std::optional<AlignedBuffer<32>>
maybe_decrypt_name(std::string_view ciphertext, SymmNonce nounce, std::string_view name) = 0;
/// xchacha symmetric cipher
virtual bool
xchacha20(const llarp_buffer_t&, const SharedSecret&, const TunnelNonce&) = 0;
/// xchacha symmetric cipher (multibuffer)
virtual bool
xchacha20_alt(
const llarp_buffer_t&, const llarp_buffer_t&, const SharedSecret&, const byte_t*) = 0;
/// path dh creator's side
virtual bool
dh_client(SharedSecret&, const PubKey&, const SecretKey&, const TunnelNonce&) = 0;
/// path dh relay side
virtual bool
dh_server(SharedSecret&, const PubKey&, const SecretKey&, const TunnelNonce&) = 0;
/// transport dh client side
virtual bool
transport_dh_client(SharedSecret&, const PubKey&, const SecretKey&, const TunnelNonce&) = 0;
/// transport dh server side
virtual bool
transport_dh_server(SharedSecret&, const PubKey&, const SecretKey&, const TunnelNonce&) = 0;
/// blake2b 256 bit
virtual bool
shorthash(ShortHash&, const llarp_buffer_t&) = 0;
/// blake2s 256 bit "hmac" (keyed hash)
virtual bool
hmac(byte_t*, const llarp_buffer_t&, const SharedSecret&) = 0;
/// ed25519 sign
virtual bool
sign(Signature&, const SecretKey&, const llarp_buffer_t&) = 0;
/// ed25519 sign (custom with derived keys)
virtual bool
sign(Signature&, const PrivateKey&, const llarp_buffer_t&) = 0;
/// ed25519 verify
virtual bool
verify(const PubKey&, const llarp_buffer_t&, const Signature&) = 0;
/// derive sub keys for public keys
virtual bool
derive_subkey(PubKey&, const PubKey&, uint64_t, const AlignedBuffer<32>* = nullptr) = 0;
/// derive sub keys for private keys
virtual bool
derive_subkey_private(
PrivateKey&, const SecretKey&, uint64_t, const AlignedBuffer<32>* = nullptr) = 0;
/// seed to secretkey
virtual bool
seed_to_secretkey(llarp::SecretKey&, const llarp::IdentitySecret&) = 0;
/// randomize buffer
virtual void
randomize(const llarp_buffer_t&) = 0;
/// randomizer memory
virtual void
randbytes(byte_t*, size_t) = 0;
/// generate signing keypair
virtual void
identity_keygen(SecretKey&) = 0;
/// generate encryption keypair
virtual void
encryption_keygen(SecretKey&) = 0;
/// generate post quantum encrytion key
virtual void
pqe_keygen(PQKeyPair&) = 0;
/// post quantum decrypt (buffer, sharedkey_dst, sec)
virtual bool
pqe_decrypt(const PQCipherBlock&, SharedSecret&, const byte_t*) = 0;
/// post quantum encrypt (buffer, sharedkey_dst, pub)
virtual bool
pqe_encrypt(PQCipherBlock&, SharedSecret&, const PQPubKey&) = 0;
virtual bool
check_identity_privkey(const SecretKey&) = 0;
/// check if a password hash string matches the challenge
virtual bool
check_passwd_hash(std::string pwhash, std::string challenge) = 0;
};
inline Crypto::~Crypto() = default;
/// return random 64bit unsigned interger
uint64_t
randint();
const byte_t*
seckey_topublic(const SecretKey& secret);
const byte_t*
pq_keypair_to_public(const PQKeyPair& keypair);
const byte_t*
pq_keypair_to_secret(const PQKeyPair& keypair);
struct CryptoManager
{
private:
static Crypto* m_crypto;
Crypto* m_prevCrypto;
public:
explicit CryptoManager(Crypto* crypto) : m_prevCrypto(m_crypto)
{
m_crypto = crypto;
}
~CryptoManager()
{
m_crypto = m_prevCrypto;
}
static Crypto*
instance()
{
#ifdef NDEBUG
return m_crypto;
#else
if (m_crypto)
return m_crypto;
assert(false && "Cryptomanager::instance() was undefined");
abort();
#endif
}
};
/// rng type that uses llarp::randint(), which is cryptographically secure
struct CSRNG
{
using result_type = uint64_t;
static constexpr uint64_t
min()
{
return std::numeric_limits<uint64_t>::min();
};
static constexpr uint64_t
max()
{
return std::numeric_limits<uint64_t>::max();
};
uint64_t
operator()()
{
return llarp::randint();
};
};
} // namespace llarp