lokinet/llarp/handlers/tun.cpp
2021-11-15 17:15:16 -04:00

1430 lines
42 KiB
C++

#include <algorithm>
#include <variant>
// harmless on other platforms
#define __USE_MINGW_ANSI_STDIO 1
#include "tun.hpp"
#include <sys/types.h>
#ifndef _WIN32
#include <sys/socket.h>
#include <netdb.h>
#endif
#include <llarp/dns/dns.hpp>
#include <llarp/ev/ev.hpp>
#include <llarp/net/net.hpp>
#include <llarp/router/abstractrouter.hpp>
#include <llarp/router/systemd_resolved.hpp>
#include <llarp/service/context.hpp>
#include <llarp/service/outbound_context.hpp>
#include <llarp/service/endpoint_state.hpp>
#include <llarp/service/outbound_context.hpp>
#include <llarp/service/name.hpp>
#include <llarp/service/protocol_type.hpp>
#include <llarp/util/meta/memfn.hpp>
#include <llarp/nodedb.hpp>
#include <llarp/quic/tunnel.hpp>
#include <llarp/rpc/endpoint_rpc.hpp>
#include <llarp/util/str.hpp>
#include <llarp/util/endian.hpp>
#include <llarp/dns/srv_data.hpp>
namespace llarp
{
namespace handlers
{
// Intercepts DNS IP packets going to an IP on the tun interface; this is currently used on
// Android and macOS where binding to a DNS port (i.e. via llarp::dns::Proxy) isn't possible
// because of OS restrictions, but a tun interface *is* available.
class DnsInterceptor : public dns::PacketHandler
{
public:
TunEndpoint* const m_Endpoint;
explicit DnsInterceptor(AbstractRouter* router, TunEndpoint* ep)
: dns::PacketHandler{router->loop(), ep}, m_Endpoint{ep} {};
void
SendServerMessageBufferTo(
const SockAddr& to, const SockAddr& from, llarp_buffer_t buf) override
{
const auto pkt = net::IPPacket::UDP(
from.getIPv4(),
ToNet(huint16_t{from.getPort()}),
to.getIPv4(),
ToNet(huint16_t{to.getPort()}),
buf);
if (pkt.sz == 0)
return;
m_Endpoint->HandleWriteIPPacket(
pkt.ConstBuffer(), net::ExpandV4(from.asIPv4()), net::ExpandV4(to.asIPv4()), 0);
}
#ifdef ANDROID
bool
IsUpstreamResolver(const SockAddr&, const SockAddr&) const override
{
return true;
}
#endif
#ifdef __APPLE__
// DNS on Apple is a bit weird because in order for the NetworkExtension itself to send data
// through the tunnel we have to proxy DNS requests through Apple APIs (and so our actual
// upstream DNS won't be set in our resolvers, which is why the vanilla IsUpstreamResolver
// won't work for us. However when active the mac also only queries the main tunnel IP for
// DNS, so we consider anything else to be upstream-bound DNS to let it through the tunnel.
bool
IsUpstreamResolver(const SockAddr& to, const SockAddr& from) const override
{
return to.asIPv6() != m_Endpoint->GetIfAddr();
}
#endif
};
TunEndpoint::TunEndpoint(AbstractRouter* r, service::Context* parent)
: service::Endpoint(r, parent)
{
m_PacketRouter = std::make_unique<vpn::PacketRouter>(
[this](net::IPPacket pkt) { HandleGotUserPacket(std::move(pkt)); });
#if defined(ANDROID) || defined(__APPLE__)
m_Resolver = std::make_shared<DnsInterceptor>(r, this);
m_PacketRouter->AddUDPHandler(huint16_t{53}, [&](net::IPPacket pkt) {
const size_t ip_header_size = (pkt.Header()->ihl * 4);
const uint8_t* ptr = pkt.buf + ip_header_size;
const auto dst = ToNet(pkt.dstv4());
const auto src = ToNet(pkt.srcv4());
const SockAddr laddr{src, nuint16_t{*reinterpret_cast<const uint16_t*>(ptr)}};
const SockAddr raddr{dst, nuint16_t{*reinterpret_cast<const uint16_t*>(ptr + 2)}};
OwnedBuffer buf{pkt.sz - (8 + ip_header_size)};
std::copy_n(ptr + 8, buf.sz, buf.buf.get());
if (m_Resolver->ShouldHandlePacket(raddr, laddr, buf))
m_Resolver->HandlePacket(raddr, laddr, buf);
else
HandleGotUserPacket(std::move(pkt));
});
#else
m_Resolver = std::make_shared<dns::Proxy>(r->loop(), this);
#endif
}
util::StatusObject
TunEndpoint::ExtractStatus() const
{
auto obj = service::Endpoint::ExtractStatus();
obj["ifaddr"] = m_OurRange.ToString();
obj["ifname"] = m_IfName;
std::vector<std::string> resolvers;
for (const auto& addr : m_UpstreamResolvers)
resolvers.emplace_back(addr.toString());
obj["ustreamResolvers"] = resolvers;
obj["localResolver"] = m_LocalResolverAddr.toString();
util::StatusObject ips{};
for (const auto& item : m_IPActivity)
{
util::StatusObject ipObj{{"lastActive", to_json(item.second)}};
std::string remoteStr;
AlignedBuffer<32> addr = m_IPToAddr.at(item.first);
if (m_SNodes.at(addr))
remoteStr = RouterID(addr.as_array()).ToString();
else
remoteStr = service::Address(addr.as_array()).ToString();
ipObj["remote"] = remoteStr;
std::string ipaddr = item.first.ToString();
ips[ipaddr] = ipObj;
}
obj["addrs"] = ips;
obj["ourIP"] = m_OurIP.ToString();
obj["nextIP"] = m_NextIP.ToString();
obj["maxIP"] = m_MaxIP.ToString();
return obj;
}
void
TunEndpoint::Thaw()
{
if (m_Resolver)
m_Resolver->Restart();
}
std::vector<SockAddr>
TunEndpoint::ReconfigureDNS(std::vector<SockAddr> servers)
{
std::swap(m_UpstreamResolvers, servers);
m_Resolver->Stop();
if (!m_Resolver->Start(
m_LocalResolverAddr.createSockAddr(), m_UpstreamResolvers, m_hostfiles))
llarp::LogError(Name(), " failed to reconfigure DNS server");
return servers;
}
bool
TunEndpoint::Configure(const NetworkConfig& conf, const DnsConfig& dnsConf)
{
if (conf.m_reachable)
{
m_PublishIntroSet = true;
LogInfo(Name(), " setting to be reachable by default");
}
else
{
m_PublishIntroSet = false;
LogInfo(Name(), " setting to be not reachable by default");
}
if (conf.m_AuthType != service::AuthType::eAuthTypeNone)
{
std::string url, method;
if (conf.m_AuthUrl.has_value() and conf.m_AuthMethod.has_value())
{
url = *conf.m_AuthUrl;
method = *conf.m_AuthMethod;
}
auto auth = std::make_shared<rpc::EndpointAuthRPC>(
url, method, conf.m_AuthWhitelist, Router()->lmq(), shared_from_this());
auth->Start();
m_AuthPolicy = std::move(auth);
}
m_TrafficPolicy = conf.m_TrafficPolicy;
m_OwnedRanges = conf.m_OwnedRanges;
m_LocalResolverAddr = dnsConf.m_bind;
m_UpstreamResolvers = dnsConf.m_upstreamDNS;
m_hostfiles = dnsConf.m_hostfiles;
m_BaseV6Address = conf.m_baseV6Address;
if (conf.m_PathAlignmentTimeout)
{
m_PathAlignmentTimeout = *conf.m_PathAlignmentTimeout;
}
else
m_PathAlignmentTimeout = service::Endpoint::PathAlignmentTimeout();
for (const auto& item : conf.m_mapAddrs)
{
if (not MapAddress(item.second, item.first, false))
return false;
}
m_IfName = conf.m_ifname;
if (m_IfName.empty())
{
const auto maybe = llarp::FindFreeTun();
if (not maybe.has_value())
throw std::runtime_error("cannot find free interface name");
m_IfName = *maybe;
}
m_OurRange = conf.m_ifaddr;
if (!m_OurRange.addr.h)
{
const auto maybe = llarp::FindFreeRange();
if (not maybe.has_value())
{
throw std::runtime_error("cannot find free address range");
}
m_OurRange = *maybe;
}
m_OurIP = m_OurRange.addr;
m_UseV6 = false;
m_PersistAddrMapFile = conf.m_AddrMapPersistFile;
if (m_PersistAddrMapFile)
{
const auto& file = *m_PersistAddrMapFile;
if (fs::exists(file))
{
bool shouldLoadFile = true;
{
constexpr auto LastModifiedWindow = 1min;
const auto lastmodified = fs::last_write_time(file);
const auto now = decltype(lastmodified)::clock::now();
if (now < lastmodified or now - lastmodified > LastModifiedWindow)
{
shouldLoadFile = false;
}
}
std::vector<char> data;
if (auto maybe = util::OpenFileStream<fs::ifstream>(file, std::ios_base::binary);
maybe and shouldLoadFile)
{
LogInfo(Name(), " loading address map file from ", file);
maybe->seekg(0, std::ios_base::end);
const size_t len = maybe->tellg();
maybe->seekg(0, std::ios_base::beg);
data.resize(len);
LogInfo(Name(), " reading ", len, " bytes");
maybe->read(data.data(), data.size());
}
else
{
if (shouldLoadFile)
{
LogInfo(Name(), " address map file ", file, " does not exist, so we won't load it");
}
else
LogInfo(Name(), " address map file ", file, " not loaded because it's stale");
}
if (not data.empty())
{
std::string_view bdata{data.data(), data.size()};
LogDebug(Name(), " parsing address map data: ", bdata);
const auto parsed = oxenmq::bt_deserialize<oxenmq::bt_dict>(bdata);
for (const auto& [key, value] : parsed)
{
huint128_t ip{};
if (not ip.FromString(key))
{
LogWarn(Name(), " malformed IP in addr map data: ", key);
continue;
}
if (m_OurIP == ip)
continue;
if (not m_OurRange.Contains(ip))
{
LogWarn(Name(), " out of range IP in addr map data: ", ip);
continue;
}
EndpointBase::AddressVariant_t addr;
if (const auto* str = std::get_if<std::string>(&value))
{
if (auto maybe = service::ParseAddress(*str))
{
addr = *maybe;
}
else
{
LogWarn(Name(), " invalid address in addr map: ", *str);
continue;
}
}
else
{
LogWarn(Name(), " invalid first entry in addr map, not a string");
continue;
}
if (const auto* loki = std::get_if<service::Address>(&addr))
{
m_IPToAddr.emplace(ip, loki->data());
m_AddrToIP.emplace(loki->data(), ip);
m_SNodes[*loki] = false;
LogInfo(Name(), " remapped ", ip, " to ", *loki);
}
if (const auto* snode = std::get_if<RouterID>(&addr))
{
m_IPToAddr.emplace(ip, snode->data());
m_AddrToIP.emplace(snode->data(), ip);
m_SNodes[*snode] = true;
LogInfo(Name(), " remapped ", ip, " to ", *snode);
}
if (m_NextIP < ip)
m_NextIP = ip;
// make sure we dont unmap this guy
MarkIPActive(ip);
}
}
}
else
{
LogInfo(
Name(), " skipping loading addr map at ", file, " as it does not currently exist");
}
}
if (auto* quic = GetQUICTunnel())
{
quic->listen([this](std::string_view, uint16_t port) {
return llarp::SockAddr{net::TruncateV6(GetIfAddr()), huint16_t{port}};
});
}
return Endpoint::Configure(conf, dnsConf);
}
bool
TunEndpoint::HasLocalIP(const huint128_t& ip) const
{
return m_IPToAddr.find(ip) != m_IPToAddr.end();
}
void
TunEndpoint::Pump(llarp_time_t now)
{
// flush network to user
while (not m_NetworkToUserPktQueue.empty())
{
m_NetIf->WritePacket(m_NetworkToUserPktQueue.top().pkt);
m_NetworkToUserPktQueue.pop();
}
service::Endpoint::Pump(now);
}
static bool
is_random_snode(const dns::Message& msg)
{
return msg.questions[0].IsName("random.snode");
}
static bool
is_localhost_loki(const dns::Message& msg)
{
return msg.questions[0].IsLocalhost();
}
static dns::Message&
clear_dns_message(dns::Message& msg)
{
msg.authorities.resize(0);
msg.additional.resize(0);
msg.answers.resize(0);
msg.hdr_fields &= ~dns::flags_RCODENameError;
return msg;
}
std::optional<std::variant<service::Address, RouterID>>
TunEndpoint::ObtainAddrForIP(huint128_t ip) const
{
auto itr = m_IPToAddr.find(ip);
if (itr == m_IPToAddr.end())
return std::nullopt;
if (m_SNodes.at(itr->second))
return RouterID{itr->second.as_array()};
else
return service::Address{itr->second.as_array()};
}
bool
TunEndpoint::HandleHookedDNSMessage(dns::Message msg, std::function<void(dns::Message)> reply)
{
auto ReplyToSNodeDNSWhenReady = [this, reply](RouterID snode, auto msg, bool isV6) -> bool {
return EnsurePathToSNode(
snode,
[this, snode, msg, reply, isV6](
const RouterID&, exit::BaseSession_ptr s, [[maybe_unused]] service::ConvoTag tag) {
SendDNSReply(snode, s, msg, reply, isV6);
});
};
auto ReplyToLokiDNSWhenReady = [this, reply, timeout = PathAlignmentTimeout()](
service::Address addr, auto msg, bool isV6) -> bool {
using service::Address;
using service::OutboundContext;
if (HasInboundConvo(addr))
{
// if we have an inbound convo to this address don't mark as outbound so we don't have a
// state race this codepath is hit when an application verifies that reverse and forward
// dns records match for an inbound session
SendDNSReply(addr, this, msg, reply, isV6);
return true;
}
MarkAddressOutbound(addr);
return EnsurePathToService(
addr,
[this, addr, msg, reply, isV6](const Address&, OutboundContext* ctx) {
SendDNSReply(addr, ctx, msg, reply, isV6);
},
timeout);
};
auto ReplyToDNSWhenReady = [ReplyToLokiDNSWhenReady, ReplyToSNodeDNSWhenReady](
auto addr, auto msg, bool isV6) {
if (auto ptr = std::get_if<RouterID>(&addr))
{
ReplyToSNodeDNSWhenReady(*ptr, msg, isV6);
return;
}
if (auto ptr = std::get_if<service::Address>(&addr))
{
ReplyToLokiDNSWhenReady(*ptr, msg, isV6);
return;
}
};
auto ReplyToLokiSRVWhenReady = [this, reply, timeout = PathAlignmentTimeout()](
service::Address addr, auto msg) -> bool {
using service::Address;
using service::OutboundContext;
// TODO: how do we handle SRV record lookups for inbound sessions?
MarkAddressOutbound(addr);
return EnsurePathToService(
addr,
[msg, addr, reply](const Address&, OutboundContext* ctx) {
if (ctx == nullptr)
return;
const auto& introset = ctx->GetCurrentIntroSet();
msg->AddSRVReply(introset.GetMatchingSRVRecords(addr.subdomain));
reply(*msg);
},
timeout);
};
if (msg.answers.size() > 0)
{
const auto& answer = msg.answers[0];
if (answer.HasCNameForTLD(".snode"))
{
dns::Name_t qname;
llarp_buffer_t buf(answer.rData);
if (not dns::DecodeName(&buf, qname, true))
return false;
RouterID addr;
if (not addr.FromString(qname))
return false;
auto replyMsg = std::make_shared<dns::Message>(clear_dns_message(msg));
return ReplyToSNodeDNSWhenReady(addr, std::move(replyMsg), false);
}
else if (answer.HasCNameForTLD(".loki"))
{
dns::Name_t qname;
llarp_buffer_t buf(answer.rData);
if (not dns::DecodeName(&buf, qname, true))
return false;
service::Address addr;
if (not addr.FromString(qname))
return false;
auto replyMsg = std::make_shared<dns::Message>(clear_dns_message(msg));
return ReplyToLokiDNSWhenReady(addr, replyMsg, false);
}
}
if (msg.questions.size() != 1)
{
llarp::LogWarn("bad number of dns questions: ", msg.questions.size());
return false;
}
std::string qname = msg.questions[0].Name();
const auto nameparts = split(qname, ".");
std::string lnsName;
if (nameparts.size() >= 2 and ends_with(qname, ".loki"))
{
lnsName = nameparts[nameparts.size() - 2];
lnsName += ".loki"sv;
}
if (msg.questions[0].qtype == dns::qTypeTXT)
{
RouterID snode;
if (snode.FromString(qname))
{
m_router->LookupRouter(snode, [reply, msg = std::move(msg)](const auto& found) mutable {
if (found.empty())
{
msg.AddNXReply();
}
else
{
std::stringstream ss;
for (const auto& rc : found)
rc.ToTXTRecord(ss);
msg.AddTXTReply(ss.str());
}
reply(msg);
});
return true;
}
else if (msg.questions[0].IsLocalhost() and msg.questions[0].HasSubdomains())
{
const auto subdomain = msg.questions[0].Subdomains();
if (subdomain == "exit")
{
if (HasExit())
{
std::stringstream ss;
m_ExitMap.ForEachEntry([&ss](const auto& range, const auto& exit) {
ss << range.ToString() << "=" << exit.ToString() << "; ";
});
msg.AddTXTReply(ss.str());
}
else
{
msg.AddNXReply();
}
}
else if (subdomain == "netid")
{
std::stringstream ss;
ss << "netid=" << m_router->rc().netID.ToString() << ";";
msg.AddTXTReply(ss.str());
}
else
{
msg.AddNXReply();
}
}
else
{
msg.AddNXReply();
}
reply(msg);
}
else if (msg.questions[0].qtype == dns::qTypeMX)
{
// mx record
service::Address addr;
if (addr.FromString(qname, ".loki") || addr.FromString(qname, ".snode")
|| is_random_snode(msg) || is_localhost_loki(msg))
{
msg.AddMXReply(qname, 1);
}
else if (service::NameIsValid(lnsName))
{
LookupNameAsync(lnsName, [msg, lnsName, reply](auto maybe) mutable {
if (maybe.has_value())
{
var::visit([&](auto&& value) { msg.AddMXReply(value.ToString(), 1); }, *maybe);
}
else
{
msg.AddNXReply();
}
reply(msg);
});
return true;
}
else
msg.AddNXReply();
reply(msg);
}
else if (msg.questions[0].qtype == dns::qTypeCNAME)
{
if (is_random_snode(msg))
{
RouterID random;
if (Router()->GetRandomGoodRouter(random))
{
msg.AddCNAMEReply(random.ToString(), 1);
}
else
msg.AddNXReply();
}
else if (msg.questions[0].IsLocalhost() and msg.questions[0].HasSubdomains())
{
const auto subdomain = msg.questions[0].Subdomains();
if (subdomain == "exit" and HasExit())
{
m_ExitMap.ForEachEntry(
[&msg](const auto&, const auto& exit) { msg.AddCNAMEReply(exit.ToString(), 1); });
}
else
{
msg.AddNXReply();
}
}
else if (is_localhost_loki(msg))
{
size_t counter = 0;
context->ForEachService(
[&](const std::string&, const std::shared_ptr<service::Endpoint>& service) -> bool {
const service::Address addr = service->GetIdentity().pub.Addr();
msg.AddCNAMEReply(addr.ToString(), 1);
++counter;
return true;
});
if (counter == 0)
msg.AddNXReply();
}
else
msg.AddNXReply();
reply(msg);
}
else if (msg.questions[0].qtype == dns::qTypeA || msg.questions[0].qtype == dns::qTypeAAAA)
{
const bool isV6 = msg.questions[0].qtype == dns::qTypeAAAA;
const bool isV4 = msg.questions[0].qtype == dns::qTypeA;
llarp::service::Address addr;
if (isV6 && !SupportsV6())
{ // empty reply but not a NXDOMAIN so that client can retry IPv4
msg.AddNSReply("localhost.loki.");
}
// on MacOS this is a typeA query
else if (is_random_snode(msg))
{
RouterID random;
if (Router()->GetRandomGoodRouter(random))
{
msg.AddCNAMEReply(random.ToString(), 1);
return ReplyToSNodeDNSWhenReady(random, std::make_shared<dns::Message>(msg), isV6);
}
else
msg.AddNXReply();
}
else if (is_localhost_loki(msg))
{
const bool lookingForExit = msg.questions[0].Subdomains() == "exit";
huint128_t ip = GetIfAddr();
if (ip.h)
{
if (lookingForExit)
{
if (HasExit())
{
m_ExitMap.ForEachEntry(
[&msg](const auto&, const auto& exit) { msg.AddCNAMEReply(exit.ToString()); });
msg.AddINReply(ip, isV6);
}
else
{
msg.AddNXReply();
}
}
else
{
msg.AddCNAMEReply(m_Identity.pub.Name(), 1);
msg.AddINReply(ip, isV6);
}
}
else
{
msg.AddNXReply();
}
}
else if (addr.FromString(qname, ".loki"))
{
if (isV4 && SupportsV6())
{
msg.hdr_fields |= dns::flags_QR | dns::flags_AA | dns::flags_RA;
}
else
{
return ReplyToLokiDNSWhenReady(addr, std::make_shared<dns::Message>(msg), isV6);
}
}
else if (addr.FromString(qname, ".snode"))
{
if (isV4 && SupportsV6())
{
msg.hdr_fields |= dns::flags_QR | dns::flags_AA | dns::flags_RA;
}
else
{
return ReplyToSNodeDNSWhenReady(
addr.as_array(), std::make_shared<dns::Message>(msg), isV6);
}
}
else if (service::NameIsValid(lnsName))
{
LookupNameAsync(
lnsName,
[msg = std::make_shared<dns::Message>(msg),
name = Name(),
lnsName,
isV6,
reply,
ReplyToDNSWhenReady](auto maybe) {
if (not maybe.has_value())
{
LogWarn(name, " lns name ", lnsName, " not resolved");
msg->AddNXReply();
reply(*msg);
return;
}
ReplyToDNSWhenReady(*maybe, msg, isV6);
});
return true;
}
else
msg.AddNXReply();
reply(msg);
}
else if (msg.questions[0].qtype == dns::qTypePTR)
{
// reverse dns
huint128_t ip = {0};
if (!dns::DecodePTR(msg.questions[0].qname, ip))
{
msg.AddNXReply();
reply(msg);
return true;
}
if (auto maybe = ObtainAddrForIP(ip))
{
var::visit([&msg](auto&& result) { msg.AddAReply(result.ToString()); }, *maybe);
reply(msg);
return true;
}
msg.AddNXReply();
reply(msg);
return true;
}
else if (msg.questions[0].qtype == dns::qTypeSRV)
{
llarp::service::Address addr;
if (is_localhost_loki(msg))
{
msg.AddSRVReply(introSet().GetMatchingSRVRecords(msg.questions[0].Subdomains()));
reply(msg);
return true;
}
else if (addr.FromString(qname, ".loki"))
{
llarp::LogDebug("SRV request for: ", qname);
return ReplyToLokiSRVWhenReady(addr, std::make_shared<dns::Message>(msg));
}
}
else
{
msg.AddNXReply();
reply(msg);
}
return true;
}
void
TunEndpoint::ResetInternalState()
{
service::Endpoint::ResetInternalState();
}
bool
TunEndpoint::SupportsV6() const
{
return m_UseV6;
}
// FIXME: pass in which question it should be addressing
bool
TunEndpoint::ShouldHookDNSMessage(const dns::Message& msg) const
{
llarp::service::Address addr;
if (msg.questions.size() == 1)
{
/// hook every .loki
if (msg.questions[0].HasTLD(".loki"))
return true;
/// hook every .snode
if (msg.questions[0].HasTLD(".snode"))
return true;
// hook any ranges we own
if (msg.questions[0].qtype == llarp::dns::qTypePTR)
{
huint128_t ip = {0};
if (!dns::DecodePTR(msg.questions[0].qname, ip))
return false;
return m_OurRange.Contains(ip);
}
}
for (const auto& answer : msg.answers)
{
if (answer.HasCNameForTLD(".loki"))
return true;
if (answer.HasCNameForTLD(".snode"))
return true;
}
return false;
}
bool
TunEndpoint::MapAddress(const service::Address& addr, huint128_t ip, bool SNode)
{
auto itr = m_IPToAddr.find(ip);
if (itr != m_IPToAddr.end())
{
llarp::LogWarn(
ip, " already mapped to ", service::Address(itr->second.as_array()).ToString());
return false;
}
llarp::LogInfo(Name() + " map ", addr.ToString(), " to ", ip);
m_IPToAddr[ip] = addr;
m_AddrToIP[addr] = ip;
m_SNodes[addr] = SNode;
MarkIPActiveForever(ip);
MarkAddressOutbound(addr);
return true;
}
std::string
TunEndpoint::GetIfName() const
{
#ifdef _WIN32
return net::TruncateV6(GetIfAddr()).ToString();
#else
return m_IfName;
#endif
}
bool
TunEndpoint::Start()
{
if (!Endpoint::Start())
{
llarp::LogWarn("Couldn't start endpoint");
return false;
}
return SetupNetworking();
}
bool
TunEndpoint::IsSNode() const
{
// TODO : implement me
return false;
}
bool
TunEndpoint::SetupTun()
{
m_NextIP = m_OurIP;
m_MaxIP = m_OurRange.HighestAddr();
llarp::LogInfo(Name(), " set ", m_IfName, " to have address ", m_OurIP);
llarp::LogInfo(Name(), " allocated up to ", m_MaxIP, " on range ", m_OurRange);
const service::Address ourAddr = m_Identity.pub.Addr();
if (not MapAddress(ourAddr, GetIfAddr(), false))
{
return false;
}
vpn::InterfaceInfo info;
info.addrs.emplace(m_OurRange);
if (m_BaseV6Address)
{
IPRange v6range = m_OurRange;
v6range.addr = (*m_BaseV6Address) | m_OurRange.addr;
LogInfo(Name(), " using v6 range: ", v6range);
info.addrs.emplace(v6range, AF_INET6);
}
info.ifname = m_IfName;
info.dnsaddr.FromString(m_LocalResolverAddr.toHost());
LogInfo(Name(), " setting up network...");
try
{
m_NetIf = Router()->GetVPNPlatform()->ObtainInterface(std::move(info));
}
catch (std::exception& ex)
{
LogError(Name(), " failed to set up network interface: ", ex.what());
}
if (not m_NetIf)
{
LogError(Name(), " failed to obtain network interface");
return false;
}
m_IfName = m_NetIf->IfName();
LogInfo(Name(), " got network interface ", m_IfName);
if (not Router()->loop()->add_network_interface(m_NetIf, [this](net::IPPacket pkt) {
m_PacketRouter->HandleIPPacket(std::move(pkt));
}))
{
LogError(Name(), " failed to add network interface");
return false;
}
#ifdef __APPLE__
m_OurIPv6 = llarp::huint128_t{
llarp::uint128_t{0xfd2e'6c6f'6b69'0000, llarp::net::TruncateV6(m_OurRange.addr).h}};
#else
const auto maybe = GetInterfaceIPv6Address(m_IfName);
if (maybe.has_value())
{
m_OurIPv6 = *maybe;
LogInfo(Name(), " has ipv6 address ", m_OurIPv6);
}
#endif
// Attempt to register DNS on the interface
systemd_resolved_set_dns(
m_IfName,
m_LocalResolverAddr.createSockAddr(),
false /* just .loki/.snode DNS initially */);
if (m_OnUp)
{
m_OnUp->NotifyAsync(NotifyParams());
}
return HasAddress(ourAddr);
}
std::unordered_map<std::string, std::string>
TunEndpoint::NotifyParams() const
{
auto env = Endpoint::NotifyParams();
env.emplace("IP_ADDR", m_OurIP.ToString());
env.emplace("IF_ADDR", m_OurRange.ToString());
env.emplace("IF_NAME", m_IfName);
std::string strictConnect;
for (const auto& addr : m_StrictConnectAddrs)
strictConnect += addr.toString() + " ";
env.emplace("STRICT_CONNECT_ADDRS", strictConnect);
return env;
}
bool
TunEndpoint::SetupNetworking()
{
llarp::LogInfo("Set Up networking for ", Name());
if (!SetupTun())
{
llarp::LogError(Name(), " failed to set up network interface");
return false;
}
if (!m_Resolver->Start(
m_LocalResolverAddr.createSockAddr(), m_UpstreamResolvers, m_hostfiles))
{
llarp::LogError(Name(), " failed to start DNS server");
return false;
}
return true;
}
void
TunEndpoint::Tick(llarp_time_t now)
{
Endpoint::Tick(now);
}
bool
TunEndpoint::Stop()
{
// save address map if applicable
#ifndef ANDROID
if (m_PersistAddrMapFile)
{
const auto& file = *m_PersistAddrMapFile;
LogInfo(Name(), " saving address map to ", file);
if (auto maybe = util::OpenFileStream<fs::ofstream>(file, std::ios_base::binary))
{
std::map<std::string, std::string> addrmap;
for (const auto& [ip, addr] : m_IPToAddr)
{
if (not m_SNodes.at(addr))
{
const service::Address a{addr.as_array()};
if (HasInboundConvo(a))
addrmap[ip.ToString()] = a.ToString();
}
}
const auto data = oxenmq::bt_serialize(addrmap);
maybe->write(data.data(), data.size());
}
}
#endif
if (m_Resolver)
m_Resolver->Stop();
return llarp::service::Endpoint::Stop();
}
void
TunEndpoint::HandleGotUserPacket(net::IPPacket pkt)
{
huint128_t dst, src;
if (pkt.IsV4())
{
dst = pkt.dst4to6();
src = pkt.src4to6();
}
else
{
dst = pkt.dstv6();
src = pkt.srcv6();
}
// this is for ipv6 slaac on ipv6 exits
/*
constexpr huint128_t ipv6_multicast_all_nodes =
huint128_t{uint128_t{0xff01'0000'0000'0000UL, 1UL}};
constexpr huint128_t ipv6_multicast_all_routers =
huint128_t{uint128_t{0xff01'0000'0000'0000UL, 2UL}};
if (dst == ipv6_multicast_all_nodes and m_state->m_ExitEnabled)
{
// send ipv6 multicast
for (const auto& [ip, addr] : m_IPToAddr)
{
(void)ip;
SendToOrQueue(
service::Address{addr.as_array()}, pkt.ConstBuffer(), service::ProtocolType::Exit);
}
return;
}
*/
if (m_state->m_ExitEnabled)
{
dst = net::ExpandV4(net::TruncateV6(dst));
}
auto itr = m_IPToAddr.find(dst);
if (itr == m_IPToAddr.end())
{
// find all ranges that match the destination ip
const auto exitEntries = m_ExitMap.FindAllEntries(dst);
if (exitEntries.empty())
{
// send icmp unreachable as we dont have any exits for this ip
if (const auto icmp = pkt.MakeICMPUnreachable())
{
HandleWriteIPPacket(icmp->ConstBuffer(), dst, src, 0);
}
return;
}
service::Address addr{};
for (const auto& [range, exitAddr] : exitEntries)
{
if (not IsBogon(dst) or range.BogonContains(dst))
{
addr = exitAddr;
}
// we do not permit bogons when they don't explicitly match a permitted bogon range
}
if (addr.IsZero()) // drop becase no exit was found that matches our rules
return;
pkt.ZeroSourceAddress();
MarkAddressOutbound(addr);
EnsurePathToService(
addr,
[pkt, this](service::Address addr, service::OutboundContext* ctx) {
if (ctx)
{
ctx->SendPacketToRemote(pkt.ConstBuffer(), service::ProtocolType::Exit);
Router()->TriggerPump();
return;
}
LogWarn("cannot ensure path to exit ", addr, " so we drop some packets");
},
PathAlignmentTimeout());
return;
}
std::variant<service::Address, RouterID> to;
service::ProtocolType type;
if (m_SNodes.at(itr->second))
{
to = RouterID{itr->second.as_array()};
type = service::ProtocolType::TrafficV4;
}
else
{
to = service::Address{itr->second.as_array()};
type = m_state->m_ExitEnabled and src != m_OurIP ? service::ProtocolType::Exit
: pkt.ServiceProtocol();
}
// prepare packet for insertion into network
// this includes clearing IP addresses, recalculating checksums, etc
// this does not happen for exits because the point is they don't rewrite addresses
if (type != service::ProtocolType::Exit)
{
if (pkt.IsV4())
pkt.UpdateIPv4Address({0}, {0});
else
pkt.UpdateIPv6Address({0}, {0});
}
// try sending it on an existing convotag
// this succeds for inbound convos, probably.
if (auto maybe = GetBestConvoTagFor(to))
{
if (SendToOrQueue(*maybe, pkt.ConstBuffer(), type))
{
MarkIPActive(dst);
Router()->TriggerPump();
return;
}
}
// try establishing a path to this guy
// will fail if it's an inbound convo
EnsurePathTo(
to,
[pkt, type, dst, to, this](auto maybe) {
if (not maybe)
{
var::visit(
[this](auto&& addr) {
LogWarn(Name(), " failed to ensure path to ", addr, " no convo tag found");
},
to);
}
if (SendToOrQueue(*maybe, pkt.ConstBuffer(), type))
{
MarkIPActive(dst);
Router()->TriggerPump();
}
else
{
var::visit(
[this](auto&& addr) {
LogWarn(Name(), " failed to send to ", addr, ", SendToOrQueue failed");
},
to);
}
},
PathAlignmentTimeout());
}
bool
TunEndpoint::ShouldAllowTraffic(const net::IPPacket& pkt) const
{
if (const auto exitPolicy = GetExitPolicy())
{
if (not exitPolicy->AllowsTraffic(pkt))
return false;
}
return true;
}
bool
TunEndpoint::HandleInboundPacket(
const service::ConvoTag tag,
const llarp_buffer_t& buf,
service::ProtocolType t,
uint64_t seqno)
{
LogTrace("Inbound ", t, " packet (", buf.sz, "B) on convo ", tag);
if (t == service::ProtocolType::QUIC)
{
auto* quic = GetQUICTunnel();
if (!quic)
{
LogWarn("incoming quic packet but this endpoint is not quic capable; dropping");
return false;
}
if (buf.sz < 4)
{
LogWarn("invalid incoming quic packet, dropping");
return false;
}
LogInfo("tag active T=", tag);
quic->receive_packet(tag, buf);
return true;
}
if (t != service::ProtocolType::TrafficV4 && t != service::ProtocolType::TrafficV6
&& t != service::ProtocolType::Exit)
return false;
std::variant<service::Address, RouterID> addr;
if (auto maybe = GetEndpointWithConvoTag(tag))
{
addr = *maybe;
}
else
return false;
huint128_t src, dst;
net::IPPacket pkt;
if (not pkt.Load(buf))
return false;
if (m_state->m_ExitEnabled)
{
// exit side from exit
// check packet against exit policy and if as needed
if (not ShouldAllowTraffic(pkt))
return false;
src = ObtainIPForAddr(addr);
if (t == service::ProtocolType::Exit)
{
if (pkt.IsV4())
dst = pkt.dst4to6();
else if (pkt.IsV6())
{
dst = pkt.dstv6();
src = net::ExpandV4Lan(net::TruncateV6(src));
}
}
else
{
// non exit traffic on exit
dst = m_OurIP;
}
}
else if (t == service::ProtocolType::Exit)
{
// client side exit traffic from exit
if (pkt.IsV4())
{
dst = m_OurIP;
src = pkt.src4to6();
}
else if (pkt.IsV6())
{
dst = m_OurIPv6;
src = pkt.srcv6();
}
// find what exit we think this should be for
service::Address fromAddr{};
if (const auto* ptr = std::get_if<service::Address>(&addr))
{
fromAddr = *ptr;
}
else // don't allow snode
return false;
const auto mapped = m_ExitMap.FindAllEntries(src);
bool allow = false;
for (const auto& [range, exitAddr] : mapped)
{
if (not IsBogon(src) or range.BogonContains(src))
{
// allow if this address matches the endpoint we think it should be
allow = exitAddr == fromAddr;
break;
}
}
if (not allow)
{
var::visit(
[&](auto&& address) { LogWarn(Name(), " does not allow ", src, " from ", address); },
addr);
return false;
}
}
else
{
// snapp traffic
src = ObtainIPForAddr(addr);
dst = m_OurIP;
}
HandleWriteIPPacket(buf, src, dst, seqno);
return true;
}
bool
TunEndpoint::HandleWriteIPPacket(
const llarp_buffer_t& b, huint128_t src, huint128_t dst, uint64_t seqno)
{
ManagedBuffer buf(b);
WritePacket write;
write.seqno = seqno;
auto& pkt = write.pkt;
// load
if (!pkt.Load(buf))
{
return false;
}
if (pkt.IsV4())
{
pkt.UpdateIPv4Address(xhtonl(net::TruncateV6(src)), xhtonl(net::TruncateV6(dst)));
}
else if (pkt.IsV6())
{
pkt.UpdateIPv6Address(src, dst);
}
m_NetworkToUserPktQueue.push(std::move(write));
// wake up so we ensure that all packets are written to user
Router()->TriggerPump();
return true;
}
huint128_t
TunEndpoint::GetIfAddr() const
{
return m_OurIP;
}
huint128_t
TunEndpoint::ObtainIPForAddr(std::variant<service::Address, RouterID> addr)
{
llarp_time_t now = Now();
huint128_t nextIP = {0};
AlignedBuffer<32> ident{};
bool snode = false;
var::visit([&ident](auto&& val) { ident = val.data(); }, addr);
if (std::get_if<RouterID>(&addr))
{
snode = true;
}
{
// previously allocated address
auto itr = m_AddrToIP.find(ident);
if (itr != m_AddrToIP.end())
{
// mark ip active
MarkIPActive(itr->second);
return itr->second;
}
}
// allocate new address
if (m_NextIP < m_MaxIP)
{
do
{
nextIP = ++m_NextIP;
} while (m_IPToAddr.find(nextIP) != m_IPToAddr.end() && m_NextIP < m_MaxIP);
if (nextIP < m_MaxIP)
{
m_AddrToIP[ident] = nextIP;
m_IPToAddr[nextIP] = ident;
m_SNodes[ident] = snode;
var::visit(
[&](auto&& remote) { llarp::LogInfo(Name(), " mapped ", remote, " to ", nextIP); },
addr);
MarkIPActive(nextIP);
return nextIP;
}
}
// we are full
// expire least active ip
// TODO: prevent DoS
std::pair<huint128_t, llarp_time_t> oldest = {huint128_t{0}, 0s};
// find oldest entry
auto itr = m_IPActivity.begin();
while (itr != m_IPActivity.end())
{
if (itr->second <= now)
{
if ((now - itr->second) > oldest.second)
{
oldest.first = itr->first;
oldest.second = itr->second;
}
}
++itr;
}
// remap address
m_IPToAddr[oldest.first] = ident;
m_AddrToIP[ident] = oldest.first;
m_SNodes[ident] = snode;
nextIP = oldest.first;
// mark ip active
m_IPActivity[nextIP] = std::max(m_IPActivity[nextIP], now);
return nextIP;
}
bool
TunEndpoint::HasRemoteForIP(huint128_t ip) const
{
return m_IPToAddr.find(ip) != m_IPToAddr.end();
}
void
TunEndpoint::MarkIPActive(huint128_t ip)
{
llarp::LogDebug(Name(), " address ", ip, " is active");
m_IPActivity[ip] = std::max(Now(), m_IPActivity[ip]);
}
void
TunEndpoint::MarkIPActiveForever(huint128_t ip)
{
m_IPActivity[ip] = std::numeric_limits<llarp_time_t>::max();
}
TunEndpoint::~TunEndpoint() = default;
} // namespace handlers
} // namespace llarp