You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lokinet/llarp/crypto/types.hpp

249 lines
6.0 KiB
C++

#ifndef LLARP_CRYPTO_TYPES_HPP
#define LLARP_CRYPTO_TYPES_HPP
#include <crypto/constants.hpp>
#include <router_id.hpp>
#include <util/aligned.hpp>
#include <util/types.hpp>
#include <util/fs.hpp>
#include <algorithm>
#include <iostream>
namespace llarp
{
using SharedSecret = AlignedBuffer<SHAREDKEYSIZE>;
using KeyExchangeNonce = AlignedBuffer<32>;
struct PubKey final : public AlignedBuffer<PUBKEYSIZE>
{
PubKey() = default;
explicit PubKey(const byte_t* ptr) : AlignedBuffer<SIZE>(ptr)
{}
explicit PubKey(const Data& data) : AlignedBuffer<SIZE>(data)
{}
explicit PubKey(const AlignedBuffer<SIZE>& other) : AlignedBuffer<SIZE>(other)
{}
std::string
ToString() const;
bool
FromString(const std::string& str);
operator RouterID() const
{
return RouterID(as_array());
}
PubKey&
operator=(const byte_t* ptr)
{
std::copy(ptr, ptr + SIZE, begin());
return *this;
}
};
inline std::ostream&
operator<<(std::ostream& out, const PubKey& k)
{
return out << k.ToString();
}
inline bool
operator==(const PubKey& lhs, const PubKey& rhs)
{
return lhs.as_array() == rhs.as_array();
}
inline bool
operator==(const PubKey& lhs, const RouterID& rhs)
{
return lhs.as_array() == rhs.as_array();
}
inline bool
operator==(const RouterID& lhs, const PubKey& rhs)
{
return lhs.as_array() == rhs.as_array();
}
struct PrivateKey;
/// Stores a sodium "secret key" value, which is actually the seed
/// concatenated with the public key. Note that the seed is *not* the private
/// key value itself, but rather the seed from which it can be calculated.
struct SecretKey final : public AlignedBuffer<SECKEYSIZE>
{
SecretKey() = default;
explicit SecretKey(const byte_t* ptr) : AlignedBuffer<SECKEYSIZE>(ptr)
{}
// The full data
explicit SecretKey(const AlignedBuffer<SECKEYSIZE>& seed) : AlignedBuffer<SECKEYSIZE>(seed)
{}
// Just the seed, we recalculate the pubkey
explicit SecretKey(const AlignedBuffer<32>& seed)
{
std::copy(seed.begin(), seed.end(), begin());
Recalculate();
}
/// recalculate public component
bool
Recalculate();
std::ostream&
print(std::ostream& stream, int level, int spaces) const
{
Printer printer(stream, level, spaces);
printer.printValue("secretkey");
return stream;
}
PubKey
toPublic() const
{
return PubKey(data() + 32);
}
/// Computes the private key from the secret key (which is actually the
/// seed)
bool
toPrivate(PrivateKey& key) const;
bool
LoadFromFile(const fs::path& fname);
bool
SaveToFile(const fs::path& fname) const;
};
inline std::ostream&
operator<<(std::ostream& out, const SecretKey&)
{
// return out << k.ToHex();
// make sure we never print out secret keys
return out << "[secretkey]";
}
/// PrivateKey is similar to SecretKey except that it only stores the private
/// key value and a hash, unlike SecretKey which stores the seed from which
/// the private key and hash value are generated. This is primarily intended
/// for use with derived keys, where we can derive the private key but not the
/// seed.
struct PrivateKey final : public AlignedBuffer<64>
{
PrivateKey() = default;
explicit PrivateKey(const byte_t* ptr) : AlignedBuffer<64>(ptr)
{}
explicit PrivateKey(const AlignedBuffer<64>& key_and_hash) : AlignedBuffer<64>(key_and_hash)
{}
/// Returns a pointer to the beginning of the 32-byte hash which is used for
/// pseudorandomness when signing with this private key.
const byte_t*
signingHash() const
{
return data() + 32;
}
/// Returns a pointer to the beginning of the 32-byte hash which is used for
/// pseudorandomness when signing with this private key.
byte_t*
signingHash()
{
return data() + 32;
}
std::ostream&
print(std::ostream& stream, int level, int spaces) const
{
Printer printer(stream, level, spaces);
printer.printValue("privatekey");
return stream;
}
/// Computes the public key
bool
toPublic(PubKey& pubkey) const;
};
inline std::ostream&
operator<<(std::ostream& out, const PrivateKey&)
{
// return out << k.ToHex();
// make sure we never print out private keys
return out << "[privatekey]";
}
/// IdentitySecret is a secret key from a service node secret seed
struct IdentitySecret final : public AlignedBuffer<32>
{
IdentitySecret() : AlignedBuffer<32>()
{}
/// no copy constructor
explicit IdentitySecret(const IdentitySecret&) = delete;
// no byte data constructor
explicit IdentitySecret(const byte_t*) = delete;
/// load service node seed from file
bool
LoadFromFile(const fs::path& fname);
};
inline std::ostream&
operator<<(std::ostream& out, const IdentitySecret&)
{
// make sure we never print out secret keys
return out << "[IdentitySecret]";
}
using ShortHash = AlignedBuffer<SHORTHASHSIZE>;
using LongHash = AlignedBuffer<HASHSIZE>;
struct Signature final : public AlignedBuffer<SIGSIZE>
{
byte_t*
Hi();
const byte_t*
Hi() const;
byte_t*
Lo();
const byte_t*
Lo() const;
};
using TunnelNonce = AlignedBuffer<TUNNONCESIZE>;
using SymmNonce = AlignedBuffer<NONCESIZE>;
using SymmKey = AlignedBuffer<32>;
using PQCipherBlock = AlignedBuffer<PQ_CIPHERTEXTSIZE + 1>;
using PQPubKey = AlignedBuffer<PQ_PUBKEYSIZE>;
using PQKeyPair = AlignedBuffer<PQ_KEYPAIRSIZE>;
/// PKE(result, publickey, secretkey, nonce)
using path_dh_func =
std::function<bool(SharedSecret&, const PubKey&, const SecretKey&, const TunnelNonce&)>;
/// TKE(result, publickey, secretkey, nonce)
using transport_dh_func =
std::function<bool(SharedSecret&, const PubKey&, const SecretKey&, const TunnelNonce&)>;
/// SH(result, body)
using shorthash_func = std::function<bool(ShortHash&, const llarp_buffer_t&)>;
} // namespace llarp
#endif