lokinet/llarp/ev/ev_libuv.cpp
Thomas Winget a91bb35dbf
Some Windows fixes (#1415)
* Should fix some windows service issues

* fix return condition inversion

* Add some Trace level logging

also make the logger actually respect the log level you set.

* event loop should not queue things to itself...

at present, logic thread queue continues until it is empty, so
queueing things onto itself is just wasteful.

* call_later(foreach thing) is better than foreach thing (call later)

also if you already queued those things but they have not happened yet,
there is no sense to queue them to happen again.

* do not queue read on write finish, only on read finish

* failure to start DNS server should be proper startup failure.

without the DNS server working lokinet is...kinda pointless, right?

* format

* don't queue stuff to logic thread if in logic thread
the thing that clears the queue...clears it.  So you're just delaying and adding overhead.

* windows unbound thread sleep instead of just busy-waiting

also clang-format decided I can't have a blank line for some reason...

* fix unbound async worker on windows
2020-10-21 09:06:43 -04:00

1141 lines
25 KiB
C++

#include <ev/ev_libuv.hpp>
#include <util/thread/logic.hpp>
#include <util/thread/queue.hpp>
#include <cstring>
namespace libuv
{
#define LoopCall(h, ...) \
{ \
auto __f = __VA_ARGS__; \
__f(); \
}
struct glue
{
virtual ~glue() = default;
virtual void
Close() = 0;
};
/// tcp connection glue between llarp and libuv
struct conn_glue : public glue
{
using WriteBuffer_t = std::vector<char>;
struct WriteEvent
{
WriteBuffer_t data;
uv_write_t request;
WriteEvent() = default;
explicit WriteEvent(size_t sz, char* ptr)
{
request.data = this;
data.resize(sz);
std::copy_n(ptr, sz, data.begin());
}
uv_buf_t
Buffer()
{
return uv_buf_init(data.data(), data.size());
}
uv_write_t*
Request()
{
return &request;
}
};
uv_tcp_t m_Handle;
uv_connect_t m_Connect;
uv_check_t m_Ticker;
llarp_tcp_connecter* const m_TCP;
llarp_tcp_acceptor* const m_Accept;
llarp_tcp_conn m_Conn;
llarp::SockAddr m_Addr;
conn_glue(uv_loop_t* loop, llarp_tcp_connecter* tcp, const llarp::SockAddr& addr)
: m_TCP(tcp), m_Accept(nullptr), m_Addr(addr)
{
m_Connect.data = this;
m_Handle.data = this;
m_TCP->impl = this;
uv_tcp_init(loop, &m_Handle);
m_Ticker.data = this;
uv_check_init(loop, &m_Ticker);
m_Conn.close = &ExplicitClose;
m_Conn.write = &ExplicitWrite;
}
conn_glue(uv_loop_t* loop, llarp_tcp_acceptor* tcp, const llarp::SockAddr& addr)
: m_TCP(nullptr), m_Accept(tcp), m_Addr(addr)
{
m_Connect.data = nullptr;
m_Handle.data = this;
uv_tcp_init(loop, &m_Handle);
m_Ticker.data = this;
uv_check_init(loop, &m_Ticker);
m_Accept->close = &ExplicitCloseAccept;
m_Conn.write = nullptr;
m_Conn.closed = nullptr;
m_Conn.tick = nullptr;
}
conn_glue(conn_glue* parent) : m_TCP(nullptr), m_Accept(nullptr)
{
m_Connect.data = nullptr;
m_Conn.close = &ExplicitClose;
m_Conn.write = &ExplicitWrite;
m_Handle.data = this;
uv_tcp_init(parent->m_Handle.loop, &m_Handle);
m_Ticker.data = this;
uv_check_init(parent->m_Handle.loop, &m_Ticker);
}
static void
OnOutboundConnect(uv_connect_t* c, int status)
{
conn_glue* self = static_cast<conn_glue*>(c->data);
self->HandleConnectResult(status);
c->data = nullptr;
}
bool
ConnectAsync()
{
return uv_tcp_connect(&m_Connect, &m_Handle, m_Addr, &OnOutboundConnect) != -1;
}
static void
ExplicitClose(llarp_tcp_conn* conn)
{
static_cast<conn_glue*>(conn->impl)->Close();
}
static void
ExplicitCloseAccept(llarp_tcp_acceptor* tcp)
{
static_cast<conn_glue*>(tcp->impl)->Close();
}
static ssize_t
ExplicitWrite(llarp_tcp_conn* conn, const byte_t* ptr, size_t sz)
{
return static_cast<conn_glue*>(conn->impl)->WriteAsync((char*)ptr, sz);
}
static void
OnRead(uv_stream_t* stream, ssize_t nread, const uv_buf_t* buf)
{
if (nread >= 0)
{
auto* conn = static_cast<conn_glue*>(stream->data);
conn->Read(buf->base, nread);
}
else if (nread < 0)
{
static_cast<conn_glue*>(stream->data)->Close();
}
delete[] buf->base;
}
static void
Alloc(uv_handle_t*, size_t suggested_size, uv_buf_t* buf)
{
buf->base = new char[suggested_size];
buf->len = suggested_size;
}
void
Read(const char* ptr, ssize_t sz)
{
if (m_Conn.read)
{
llarp::LogDebug("tcp read ", sz, " bytes");
const llarp_buffer_t buf(ptr, sz);
m_Conn.read(&m_Conn, buf);
}
}
void
HandleConnectResult(int status)
{
if (m_TCP && m_TCP->connected)
{
if (status == 0)
{
m_Conn.impl = this;
m_Conn.loop = m_TCP->loop;
m_Conn.close = &ExplicitClose;
m_Conn.write = &ExplicitWrite;
m_TCP->connected(m_TCP, &m_Conn);
Start();
}
else if (m_TCP->error)
{
llarp::LogError("failed to connect tcp ", uv_strerror(status));
m_TCP->error(m_TCP);
}
}
}
void
WriteFail()
{
if (m_Conn.close)
m_Conn.close(&m_Conn);
}
uv_stream_t*
Stream()
{
return (uv_stream_t*)&m_Handle;
}
static void
OnWritten(uv_write_t* req, int status)
{
WriteEvent* ev = static_cast<WriteEvent*>(req->data);
if (status == 0)
{
llarp::LogDebug("wrote ", ev->data.size());
}
else
{
llarp::LogDebug("write fail");
}
delete ev;
}
int
WriteAsync(char* data, size_t sz)
{
if (uv_is_closing((const uv_handle_t*)&m_Handle))
return -1;
WriteEvent* ev = new WriteEvent(sz, data);
auto buf = ev->Buffer();
if (uv_write(ev->Request(), Stream(), &buf, 1, &OnWritten) == 0)
return sz;
delete ev;
return -1;
}
static void
OnClosed(uv_handle_t* h)
{
conn_glue* conn = static_cast<conn_glue*>(h->data);
conn->HandleClosed();
}
static void
FullClose(uv_handle_t* h)
{
auto* self = static_cast<conn_glue*>(h->data);
h->data = nullptr;
delete self;
llarp::LogDebug("deleted");
}
void
HandleClosed()
{
m_Handle.data = nullptr;
if (m_Accept)
{
if (m_Accept->closed)
m_Accept->closed(m_Accept);
m_Accept->impl = nullptr;
}
if (m_Conn.closed)
{
m_Conn.closed(&m_Conn);
}
m_Conn.impl = nullptr;
llarp::LogDebug("closed");
uv_close((uv_handle_t*)&m_Ticker, &FullClose);
}
static void
OnShutdown(uv_shutdown_t* shut, int code)
{
llarp::LogDebug("shut down ", code);
auto* self = static_cast<conn_glue*>(shut->data);
uv_close((uv_handle_t*)&self->m_Handle, &OnClosed);
delete shut;
}
void
Close() override
{
if (uv_is_closing((uv_handle_t*)Stream()))
return;
llarp::LogDebug("close tcp connection");
uv_check_stop(&m_Ticker);
uv_read_stop(Stream());
auto* shut = new uv_shutdown_t();
shut->data = this;
uv_shutdown(shut, Stream(), &OnShutdown);
}
static void
OnAccept(uv_stream_t* stream, int status)
{
if (status == 0)
{
conn_glue* conn = static_cast<conn_glue*>(stream->data);
conn->Accept();
}
else
{
llarp::LogError("tcp accept failed: ", uv_strerror(status));
}
}
static void
OnTick(uv_check_t* t)
{
llarp::LogTrace("conn_glue::OnTick() start");
conn_glue* conn = static_cast<conn_glue*>(t->data);
conn->Tick();
llarp::LogTrace("conn_glue::OnTick() end");
}
void
Tick()
{
if (m_Accept && m_Accept->tick)
{
m_Accept->tick(m_Accept);
}
if (m_Conn.tick)
{
m_Conn.tick(&m_Conn);
}
}
void
Start()
{
auto result = uv_check_start(&m_Ticker, &OnTick);
if (result)
llarp::LogError("failed to start timer ", uv_strerror(result));
result = uv_read_start(Stream(), &Alloc, &OnRead);
if (result)
llarp::LogError("failed to start reader ", uv_strerror(result));
}
void
Accept()
{
if (m_Accept && m_Accept->accepted)
{
auto* child = new conn_glue(this);
llarp::LogDebug("accepted new connection");
child->m_Conn.impl = child;
child->m_Conn.loop = m_Accept->loop;
child->m_Conn.close = &ExplicitClose;
child->m_Conn.write = &ExplicitWrite;
auto res = uv_accept(Stream(), child->Stream());
if (res)
{
llarp::LogError("failed to accept tcp connection ", uv_strerror(res));
child->Close();
return;
}
m_Accept->accepted(m_Accept, &child->m_Conn);
child->Start();
}
}
bool
Server()
{
uv_check_start(&m_Ticker, &OnTick);
m_Accept->close = &ExplicitCloseAccept;
return uv_tcp_bind(&m_Handle, m_Addr, 0) == 0 && uv_listen(Stream(), 5, &OnAccept) == 0;
}
};
struct ticker_glue : public glue
{
std::function<void(void)> func;
ticker_glue(uv_loop_t* loop, std::function<void(void)> tick) : func(tick)
{
m_Ticker.data = this;
uv_check_init(loop, &m_Ticker);
}
static void
OnTick(uv_check_t* t)
{
llarp::LogTrace("ticker_glue::OnTick() start");
ticker_glue* ticker = static_cast<ticker_glue*>(t->data);
ticker->func();
Loop* loop = static_cast<Loop*>(t->loop->data);
loop->FlushLogic();
llarp::LogTrace("ticker_glue::OnTick() end");
}
bool
Start()
{
return uv_check_start(&m_Ticker, &OnTick) != -1;
}
void
Close() override
{
uv_check_stop(&m_Ticker);
uv_close((uv_handle_t*)&m_Ticker, [](auto h) {
ticker_glue* self = (ticker_glue*)h->data;
h->data = nullptr;
delete self;
});
}
uv_check_t m_Ticker;
};
struct udp_glue : public glue
{
uv_udp_t m_Handle;
uv_check_t m_Ticker;
llarp_udp_io* const m_UDP;
llarp::SockAddr m_Addr;
std::vector<char> m_Buffer;
udp_glue(uv_loop_t* loop, llarp_udp_io* udp, const llarp::SockAddr& src)
: m_UDP(udp), m_Addr(src)
{
m_Handle.data = this;
m_Ticker.data = this;
uv_udp_init(loop, &m_Handle);
uv_check_init(loop, &m_Ticker);
}
static void
Alloc(uv_handle_t* h, size_t suggested_size, uv_buf_t* buf)
{
udp_glue* self = static_cast<udp_glue*>(h->data);
if (self->m_Buffer.empty())
self->m_Buffer.resize(suggested_size);
buf->base = self->m_Buffer.data();
buf->len = self->m_Buffer.size();
}
/// callback for libuv
static void
OnRecv(uv_udp_t* handle, ssize_t nread, const uv_buf_t* buf, const sockaddr* addr, unsigned)
{
udp_glue* glue = static_cast<udp_glue*>(handle->data);
if (addr)
glue->RecvFrom(nread, buf, llarp::SockAddr(*addr));
}
void
RecvFrom(ssize_t sz, const uv_buf_t* buf, const llarp::SockAddr& fromaddr)
{
if (sz > 0 && m_UDP)
{
const size_t pktsz = sz;
if (m_UDP->recvfrom)
{
const llarp_buffer_t pkt((const byte_t*)buf->base, pktsz);
m_UDP->recvfrom(m_UDP, fromaddr, ManagedBuffer{pkt});
}
}
}
static void
OnTick(uv_check_t* t)
{
llarp::LogTrace("udp_glue::OnTick() start");
udp_glue* udp = static_cast<udp_glue*>(t->data);
udp->Tick();
llarp::LogTrace("udp_glue::OnTick() end");
}
void
Tick()
{
if (m_UDP && m_UDP->tick)
m_UDP->tick(m_UDP);
}
static int
SendTo(llarp_udp_io* udp, const llarp::SockAddr& to, const byte_t* ptr, size_t sz)
{
auto* self = static_cast<udp_glue*>(udp->impl);
if (self == nullptr)
return -1;
auto buf = uv_buf_init((char*)ptr, sz);
return uv_udp_try_send(&self->m_Handle, &buf, 1, to);
}
bool
Bind()
{
auto ret = uv_udp_bind(&m_Handle, m_Addr, 0);
if (ret)
{
llarp::LogError("failed to bind to ", m_Addr, " ", uv_strerror(ret));
return false;
}
if (uv_udp_recv_start(&m_Handle, &Alloc, &OnRecv))
{
llarp::LogError("failed to start recving packets via ", m_Addr);
return false;
}
if (uv_check_start(&m_Ticker, &OnTick))
{
llarp::LogError("failed to start ticker");
return false;
}
#if defined(_WIN32) || defined(_WIN64)
#else
if (uv_fileno((const uv_handle_t*)&m_Handle, &m_UDP->fd))
return false;
#endif
m_UDP->sendto = &SendTo;
m_UDP->impl = this;
return true;
}
static void
OnClosed(uv_handle_t* h)
{
auto* glue = static_cast<udp_glue*>(h->data);
if (glue)
{
h->data = nullptr;
delete glue;
}
}
void
Close() override
{
m_UDP->impl = nullptr;
uv_check_stop(&m_Ticker);
uv_close((uv_handle_t*)&m_Handle, &OnClosed);
}
};
struct pipe_glue : public glue
{
byte_t m_Buffer[1024 * 8];
llarp_ev_pkt_pipe* const m_Pipe;
pipe_glue(uv_loop_t* loop, llarp_ev_pkt_pipe* pipe) : m_Pipe(pipe)
{
m_Handle.data = this;
m_Ticker.data = this;
uv_poll_init(loop, &m_Handle, m_Pipe->fd);
uv_check_init(loop, &m_Ticker);
}
void
Tick()
{
LoopCall(&m_Handle, std::bind(&llarp_ev_pkt_pipe::tick, m_Pipe));
}
static void
OnRead(uv_poll_t* handle, int status, int)
{
if (status)
{
return;
}
pipe_glue* glue = static_cast<pipe_glue*>(handle->data);
int r = glue->m_Pipe->read(glue->m_Buffer, sizeof(glue->m_Buffer));
if (r <= 0)
return;
const llarp_buffer_t buf{glue->m_Buffer, static_cast<size_t>(r)};
glue->m_Pipe->OnRead(buf);
}
static void
OnClosed(uv_handle_t* h)
{
auto* self = static_cast<pipe_glue*>(h->data);
if (self)
{
h->data = nullptr;
delete self;
}
}
void
Close() override
{
uv_check_stop(&m_Ticker);
uv_close((uv_handle_t*)&m_Handle, &OnClosed);
}
static void
OnTick(uv_check_t* h)
{
llarp::LogTrace("pipe_glue::OnTick() start");
pipe_glue* pipe = static_cast<pipe_glue*>(h->data);
LoopCall(h, std::bind(&pipe_glue::Tick, pipe));
llarp::LogTrace("pipe_glue::OnTick() end");
}
bool
Start()
{
if (uv_poll_start(&m_Handle, UV_READABLE, &OnRead))
return false;
if (uv_check_start(&m_Ticker, &OnTick))
return false;
return true;
}
uv_poll_t m_Handle;
uv_check_t m_Ticker;
};
#if defined(_WIN32) || defined(_WIN64)
#else
struct tun_glue : public glue
{
uv_poll_t m_Handle;
uv_check_t m_Ticker;
llarp_tun_io* const m_Tun;
device* const m_Device;
byte_t m_Buffer[1500];
bool readpkt;
tun_glue(llarp_tun_io* tun) : m_Tun(tun), m_Device(tuntap_init())
{
m_Handle.data = this;
m_Ticker.data = this;
readpkt = false;
}
~tun_glue() override
{
tuntap_destroy(m_Device);
}
static void
OnTick(uv_check_t* timer)
{
llarp::LogTrace("tun_glue::OnTick() start");
tun_glue* tun = static_cast<tun_glue*>(timer->data);
tun->Tick();
llarp::LogTrace("tun_glue::OnTick() end");
}
static void
OnPoll(uv_poll_t* h, int, int events)
{
if (events & UV_READABLE)
{
static_cast<tun_glue*>(h->data)->Read();
}
}
void
Read()
{
auto sz = tuntap_read(m_Device, m_Buffer, sizeof(m_Buffer));
if (sz > 0)
{
llarp::LogDebug("tun read ", sz);
const llarp_buffer_t pkt(m_Buffer, sz);
if (m_Tun && m_Tun->recvpkt)
m_Tun->recvpkt(m_Tun, pkt);
}
}
void
Tick()
{
if (m_Tun->before_write)
m_Tun->before_write(m_Tun);
if (m_Tun->tick)
m_Tun->tick(m_Tun);
}
static void
OnClosed(uv_handle_t* h)
{
auto* self = static_cast<tun_glue*>(h->data);
if (self)
{
h->data = nullptr;
delete self;
}
}
void
Close() override
{
if (m_Tun->impl == nullptr)
return;
m_Tun->impl = nullptr;
uv_check_stop(&m_Ticker);
uv_close((uv_handle_t*)&m_Ticker, [](uv_handle_t* h) {
tun_glue* glue = static_cast<tun_glue*>(h->data);
uv_close((uv_handle_t*)&glue->m_Handle, &OnClosed);
});
}
bool
Write(const byte_t* pkt, size_t sz)
{
return tuntap_write(m_Device, (void*)pkt, sz) != -1;
}
static bool
WritePkt(llarp_tun_io* tun, const byte_t* pkt, size_t sz)
{
tun_glue* glue = static_cast<tun_glue*>(tun->impl);
return glue && glue->Write(pkt, sz);
}
bool
Init(uv_loop_t* loop)
{
memcpy(m_Device->if_name, m_Tun->ifname, sizeof(m_Device->if_name));
if (tuntap_start(m_Device, TUNTAP_MODE_TUNNEL, 0) == -1)
{
llarp::LogError("failed to start up ", m_Tun->ifname);
return false;
}
// copy back
memcpy(m_Tun->ifname, m_Device->if_name, sizeof(m_Tun->ifname));
if (tuntap_set_ip(m_Device, m_Tun->ifaddr, m_Tun->ifaddr, m_Tun->netmask) == -1)
{
llarp::LogError("failed to set address on ", m_Tun->ifname);
return false;
}
if (tuntap_up(m_Device) == -1)
{
llarp::LogError("failed to put up ", m_Tun->ifname);
return false;
}
if (m_Device->tun_fd == -1)
{
llarp::LogError("tun interface ", m_Tun->ifname, " has invalid fd: ", m_Device->tun_fd);
return false;
}
tuntap_set_nonblocking(m_Device, 1);
if (uv_poll_init(loop, &m_Handle, m_Device->tun_fd) == -1)
{
llarp::LogError("failed to start polling on ", m_Tun->ifname);
return false;
}
if (uv_poll_start(&m_Handle, UV_READABLE, &OnPoll))
{
llarp::LogError("failed to start polling on ", m_Tun->ifname);
return false;
}
if (uv_check_init(loop, &m_Ticker) != 0 || uv_check_start(&m_Ticker, &OnTick) != 0)
{
llarp::LogError("failed to set up tun interface timer for ", m_Tun->ifname);
return false;
}
m_Tun->writepkt = &WritePkt;
m_Tun->impl = this;
return true;
}
};
#endif
void
Loop::FlushLogic()
{
llarp::LogTrace("Loop::FlushLogic() start");
while (not m_LogicCalls.empty())
{
auto f = m_LogicCalls.popFront();
f();
}
llarp::LogTrace("Loop::FlushLogic() end");
}
static void
OnAsyncWake(uv_async_t* async_handle)
{
llarp::LogTrace("OnAsyncWake, ticking event loop.");
Loop* loop = static_cast<Loop*>(async_handle->data);
loop->update_time();
loop->process_timer_queue();
loop->process_cancel_queue();
loop->FlushLogic();
auto& log = llarp::LogContext::Instance();
if (log.logStream)
log.logStream->Tick(loop->time_now());
}
Loop::Loop(size_t queue_size)
: llarp_ev_loop(), m_LogicCalls(queue_size), m_timerQueue(20), m_timerCancelQueue(20)
{}
bool
Loop::init()
{
if (uv_loop_init(&m_Impl) == -1)
return false;
#ifdef LOKINET_DEBUG
last_time = 0;
loop_run_count = 0;
#endif
m_Impl.data = this;
#if defined(_WIN32) || defined(_WIN64)
#else
uv_loop_configure(&m_Impl, UV_LOOP_BLOCK_SIGNAL, SIGPIPE);
#endif
m_TickTimer = new uv_timer_t;
m_TickTimer->data = this;
if (uv_timer_init(&m_Impl, m_TickTimer) == -1)
return false;
m_Run.store(true);
m_nextID.store(0);
m_WakeUp.data = this;
uv_async_init(&m_Impl, &m_WakeUp, &OnAsyncWake);
return true;
}
void
Loop::update_time()
{
llarp_ev_loop::update_time();
uv_update_time(&m_Impl);
}
bool
Loop::running() const
{
return m_Run.load();
}
bool
Loop::tcp_connect(llarp_tcp_connecter* tcp, const llarp::SockAddr& addr)
{
auto* impl = new conn_glue(&m_Impl, tcp, addr);
tcp->impl = impl;
if (impl->ConnectAsync())
return true;
delete impl;
tcp->impl = nullptr;
return false;
}
static void
OnTickTimeout(uv_timer_t* timer)
{
uv_stop(timer->loop);
}
int
Loop::run()
{
llarp::LogTrace("Loop::run()");
m_EventLoopThreadID = std::this_thread::get_id();
return uv_run(&m_Impl, UV_RUN_DEFAULT);
}
int
Loop::tick(int ms)
{
if (m_Run)
{
#ifdef TESTNET_SPEED
ms *= TESTNET_SPEED;
#endif
uv_timer_start(m_TickTimer, &OnTickTimeout, ms, 0);
uv_run(&m_Impl, UV_RUN_ONCE);
}
return 0;
}
struct TimerData
{
Loop* loop;
uint64_t job_id;
};
void
CloseUVTimer(uv_timer_t* timer)
{
// have to delete timer handle this way because libuv.
uv_timer_stop(timer);
uv_close((uv_handle_t*)timer, [](uv_handle_t* handle) { delete (uv_timer_t*)handle; });
}
static void
OnUVTimer(uv_timer_t* timer)
{
TimerData* timer_data = static_cast<TimerData*>(timer->data);
Loop* loop = timer_data->loop;
loop->do_timer_job(timer_data->job_id);
delete timer_data;
CloseUVTimer(timer);
}
uint32_t
Loop::call_after_delay(llarp_time_t delay_ms, std::function<void(void)> callback)
{
llarp::LogTrace("Loop::call_after_delay()");
#ifdef TESTNET_SPEED
delay_ms *= TESTNET_SPEED;
#endif
PendingTimer timer;
timer.delay_ms = delay_ms;
timer.callback = callback;
timer.job_id = m_nextID++;
uint64_t job_id = timer.job_id;
m_timerQueue.pushBack(std::move(timer));
uv_async_send(&m_WakeUp);
return job_id;
}
void
Loop::cancel_delayed_call(uint32_t job_id)
{
m_timerCancelQueue.pushBack(job_id);
uv_async_send(&m_WakeUp);
}
void
Loop::process_timer_queue()
{
while (not m_timerQueue.empty())
{
PendingTimer job = m_timerQueue.popFront();
uint64_t job_id = job.job_id;
m_pendingCalls.emplace(job_id, std::move(job.callback));
TimerData* timer_data = new TimerData;
timer_data->loop = this;
timer_data->job_id = job_id;
uv_timer_t* newTimer = new uv_timer_t;
newTimer->data = (void*)timer_data;
uv_timer_init(&m_Impl, newTimer);
uv_timer_start(newTimer, &OnUVTimer, job.delay_ms.count(), 0);
}
}
void
Loop::process_cancel_queue()
{
while (not m_timerCancelQueue.empty())
{
uint64_t job_id = m_timerCancelQueue.popFront();
m_pendingCalls.erase(job_id);
}
}
void
Loop::do_timer_job(uint64_t job_id)
{
auto itr = m_pendingCalls.find(job_id);
if (itr != m_pendingCalls.end())
{
if (itr->second)
itr->second();
m_pendingCalls.erase(itr->first);
}
}
void
Loop::stop()
{
if (m_Run)
{
llarp::LogInfo("stopping event loop");
CloseAll();
uv_stop(&m_Impl);
}
m_Run.store(false);
}
void
Loop::CloseAll()
{
llarp::LogInfo("Closing all handles");
uv_walk(
&m_Impl,
[](uv_handle_t* h, void*) {
if (uv_is_closing(h))
return;
if (h->data && uv_is_active(h) && h->type != UV_TIMER && h->type != UV_POLL)
{
auto glue = reinterpret_cast<libuv::glue*>(h->data);
if (glue)
glue->Close();
}
},
nullptr);
}
void
Loop::stopped()
{
llarp::LogInfo("we have stopped");
}
bool
Loop::udp_listen(llarp_udp_io* udp, const llarp::SockAddr& src)
{
auto* impl = new udp_glue(&m_Impl, udp, src);
udp->impl = impl;
if (impl->Bind())
{
return true;
}
llarp::LogError("Loop::udp_listen failed to bind");
delete impl;
return false;
}
bool
Loop::add_ticker(std::function<void(void)> func)
{
auto* ticker = new ticker_glue(&m_Impl, func);
if (ticker->Start())
{
return true;
}
delete ticker;
return false;
}
bool
Loop::udp_close(llarp_udp_io* udp)
{
if (udp == nullptr)
return false;
auto* glue = static_cast<udp_glue*>(udp->impl);
if (glue == nullptr)
return false;
glue->Close();
return true;
}
bool
Loop::tun_listen(llarp_tun_io* tun)
{
#if defined(_WIN32) || defined(_WIN64)
(void)tun;
return false;
#else
auto* glue = new tun_glue(tun);
tun->impl = glue;
if (glue->Init(&m_Impl))
{
return true;
}
delete glue;
return false;
#endif
}
bool
Loop::tcp_listen(llarp_tcp_acceptor* tcp, const llarp::SockAddr& addr)
{
auto* glue = new conn_glue(&m_Impl, tcp, addr);
tcp->impl = glue;
if (glue->Server())
return true;
tcp->impl = nullptr;
delete glue;
return false;
}
bool
Loop::add_pipe(llarp_ev_pkt_pipe* p)
{
auto* glue = new pipe_glue(&m_Impl, p);
if (glue->Start())
return true;
delete glue;
return false;
}
void
Loop::call_soon(std::function<void(void)> f)
{
if (not m_EventLoopThreadID.has_value())
{
m_LogicCalls.tryPushBack(f);
uv_async_send(&m_WakeUp);
return;
}
const auto inEventLoop = *m_EventLoopThreadID == std::this_thread::get_id();
if (inEventLoop)
{
f();
}
else
m_LogicCalls.pushBack(f);
uv_async_send(&m_WakeUp);
}
void
OnUVPollFDReadable(uv_poll_t* handle, int status, [[maybe_unused]] int events)
{
if (status < 0)
return; // probably fd was closed
auto func = static_cast<libuv::Loop::Callback*>(handle->data);
(*func)();
}
void
Loop::register_poll_fd_readable(int fd, Callback callback)
{
if (m_Polls.count(fd))
{
llarp::LogError(
"Attempting to create event loop poll on fd ",
fd,
", but an event loop poll for that fd already exists.");
return;
}
// new a copy as the one passed in here will go out of scope
auto function_ptr = new Callback(callback);
auto& new_poll = m_Polls[fd];
uv_poll_init(&m_Impl, &new_poll, fd);
new_poll.data = (void*)function_ptr;
uv_poll_start(&new_poll, UV_READABLE, &OnUVPollFDReadable);
}
void
Loop::deregister_poll_fd_readable(int fd)
{
auto itr = m_Polls.find(fd);
if (itr != m_Polls.end())
{
uv_poll_stop(&(itr->second));
auto func = static_cast<Callback*>(itr->second.data);
delete func;
m_Polls.erase(itr);
}
}
} // namespace libuv