lokinet/llarp/handlers/tun.cpp
2018-11-14 14:34:17 -05:00

560 lines
17 KiB
C++

#include <algorithm>
// harmless on other platforms
#define __USE_MINGW_ANSI_STDIO 1
#include <llarp/handlers/tun.hpp>
#include "router.hpp"
#include <sys/types.h>
#ifndef _WIN32
#include <sys/socket.h>
#include <netdb.h>
#endif
#ifndef DNS_PORT
#define DNS_PORT (53)
#endif
namespace llarp
{
namespace handlers
{
TunEndpoint::TunEndpoint(const std::string &nickname, llarp_router *r)
: service::Endpoint(nickname, r)
, m_UserToNetworkPktQueue(nickname + "_sendq", r->netloop)
, m_NetworkToUserPktQueue(nickname + "_recvq", r->netloop)
{
tunif.user = this;
tunif.netmask = DefaultTunNetmask;
strncpy(tunif.ifaddr, DefaultTunSrcAddr, sizeof(tunif.ifaddr) - 1);
strncpy(tunif.ifname, DefaultTunIfname, sizeof(tunif.ifname) - 1);
tunif.tick = nullptr;
tunif.before_write = &tunifBeforeWrite;
tunif.recvpkt = &tunifRecvPkt;
this->dll.ip_tracker = nullptr;
this->dll.user = &r->hiddenServiceContext;
// this->dll.callback = std::bind(&TunEndpoint::MapAddress, this);
}
bool
TunEndpoint::SetOption(const std::string &k, const std::string &v)
{
if(k == "exit-node")
{
llarp::RouterID exitRouter;
if(!HexDecode(v.c_str(), exitRouter, exitRouter.size()))
{
llarp::LogError(Name(), " bad exit router key: ", v);
return false;
}
m_Exit.reset(new llarp::exit::BaseSession(
exitRouter,
std::bind(&TunEndpoint::QueueInboundPacketForExit, this,
std::placeholders::_1),
router, m_NumPaths, numHops));
llarp::LogInfo(Name(), " using exit at ", exitRouter);
}
if(k == "local-dns")
{
std::string resolverAddr = v;
uint16_t dnsport = DNS_PORT;
auto pos = v.find(":");
if(pos != std::string::npos)
{
resolverAddr = v.substr(0, pos);
dnsport = std::atoi(v.substr(pos + 1).c_str());
}
m_LocalResolverAddr = llarp::Addr(resolverAddr, dnsport);
llarp::LogInfo(Name(), " local dns set to ", m_LocalResolverAddr);
}
if(k == "upstream-dns")
{
std::string resolverAddr = v;
uint16_t dnsport = DNS_PORT;
auto pos = v.find(":");
if(pos != std::string::npos)
{
resolverAddr = v.substr(0, pos);
dnsport = std::atoi(v.substr(pos + 1).c_str());
}
m_UpstreamDNSAddr = llarp::Addr(resolverAddr, dnsport);
llarp::LogInfo(Name(), " upstream dns set to ", m_UpstreamDNSAddr);
}
if(k == "mapaddr")
{
auto pos = v.find(":");
if(pos == std::string::npos)
{
llarp::LogError("Cannot map address ", v,
" invalid format, missing colon (:), expects "
"address.loki:ip.address.goes.here");
return false;
}
service::Address addr;
auto addr_str = v.substr(0, pos);
if(!addr.FromString(addr_str))
{
llarp::LogError(Name() + " cannot map invalid address ", addr_str);
return false;
}
auto ip_str = v.substr(pos + 1);
in_addr ip;
if(inet_pton(AF_INET, ip_str.c_str(), &ip) != 1)
{
llarp::LogError("cannot map to invalid ip ", ip_str);
return false;
}
return MapAddress(addr, huint32_t{ntohl(ip.s_addr)});
}
if(k == "ifname")
{
strncpy(tunif.ifname, v.c_str(), sizeof(tunif.ifname) - 1);
llarp::LogInfo(Name() + " setting ifname to ", tunif.ifname);
return true;
}
if(k == "ifaddr")
{
std::string addr;
auto pos = v.find("/");
if(pos != std::string::npos)
{
int num;
std::string part = v.substr(pos + 1);
#if defined(ANDROID) || defined(RPI)
num = atoi(part.c_str());
#else
num = std::stoi(part);
#endif
if(num > 0)
{
tunif.netmask = num;
addr = v.substr(0, pos);
}
else
{
llarp::LogError("bad ifaddr value: ", v);
return false;
}
}
else
{
tunif.netmask = 32;
addr = v;
}
llarp::LogInfo(Name() + " set ifaddr to ", addr, " with netmask ",
tunif.netmask);
strncpy(tunif.ifaddr, addr.c_str(), sizeof(tunif.ifaddr) - 1);
// set up address in dotLokiLookup
// llarp::Addr tunIp(tunif.ifaddr);
llarp::huint32_t tunIpV4;
tunIpV4.h = inet_addr(tunif.ifaddr);
// related to dns_iptracker_setup_dotLokiLookup(&this->dll, tunIp);
dns_iptracker_setup(
this->dll.ip_tracker,
tunIpV4); // claim GW IP to make sure it's not inuse
return true;
}
return Endpoint::SetOption(k, v);
}
bool
TunEndpoint::HasLocalIP(const huint32_t &ip) const
{
return m_IPToAddr.find(ip) != m_IPToAddr.end();
}
bool
TunEndpoint::QueueOutboundTraffic(llarp::net::IPv4Packet &&pkt)
{
return m_NetworkToUserPktQueue.EmplaceIf(
[](llarp::net::IPv4Packet &) -> bool { return true; },
std::move(pkt));
}
bool
TunEndpoint::MapAddress(const service::Address &addr, huint32_t ip)
{
auto itr = m_IPToAddr.find(ip);
if(itr != m_IPToAddr.end())
{
// XXX is calling inet_ntoa safe in this context? it's MP-unsafe
llarp::LogWarn(ip, " already mapped to ",
service::Address(itr->second).ToString());
return false;
}
llarp::LogInfo(Name() + " map ", addr.ToString(), " to ", ip);
m_IPToAddr.insert(std::make_pair(ip, addr.data()));
m_AddrToIP.insert(std::make_pair(addr.data(), ip));
MarkIPActiveForever(ip);
return true;
}
bool
TunEndpoint::Start()
{
// do network isolation first
if(!Endpoint::Start())
return false;
#ifdef WIN32
return SetupNetworking();
#else
if(!NetworkIsIsolated())
{
llarp::LogInfo("Setting up global DNS IP tracker");
llarp::huint32_t tunIpV4;
tunIpV4.h = inet_addr(tunif.ifaddr);
dns_iptracker_setup_dotLokiLookup(
&this->dll, tunIpV4); // just set ups dll to use global iptracker
dns_iptracker_setup(
this->dll.ip_tracker,
tunIpV4); // claim GW IP to make sure it's not inuse
// set up networking in currrent thread if we are not isolated
if(!SetupNetworking())
return false;
}
else
{
llarp::LogInfo("Setting up per netns DNS IP tracker");
llarp::huint32_t tunIpV4;
tunIpV4.h = inet_addr(tunif.ifaddr);
llarp::Addr tunIp(tunif.ifaddr);
this->dll.ip_tracker = new dns_iptracker;
dns_iptracker_setup_dotLokiLookup(
&this->dll, tunIpV4); // just set ups dll to use global iptracker
dns_iptracker_setup(
this->dll.ip_tracker,
tunIpV4); // claim GW IP to make sure it's not inuse
}
// wait for result for network setup
llarp::LogInfo("waiting for tun interface...");
return m_TunSetupResult.get_future().get();
#endif
}
bool
TunEndpoint::SetupTun()
{
if(!llarp_ev_add_tun(EndpointNetLoop(), &tunif))
{
llarp::LogError(Name(), " failed to set up tun interface");
return false;
}
struct addrinfo hint, *res = NULL;
int ret;
memset(&hint, '\0', sizeof hint);
hint.ai_family = PF_UNSPEC;
hint.ai_flags = AI_NUMERICHOST;
ret = getaddrinfo(tunif.ifaddr, NULL, &hint, &res);
if(ret)
{
llarp::LogError(Name(),
" failed to set up tun interface, cant determine "
"family from ",
tunif.ifaddr);
return false;
}
/*
// output is in network byte order
unsigned char buf[sizeof(struct in6_addr)];
int s = inet_pton(res->ai_family, tunif.ifaddr, buf);
if (s <= 0)
{
llarp::LogError(Name(), " failed to set up tun interface, cant parse ",
tunif.ifaddr); return false;
}
*/
if(res->ai_family == AF_INET6)
{
llarp::LogError(Name(),
" failed to set up tun interface, we don't support "
"IPv6 format");
return false;
}
freeaddrinfo(res);
struct in_addr addr; // network byte order
if(inet_aton(tunif.ifaddr, &addr) == 0)
{
llarp::LogError(Name(), " failed to set up tun interface, cant parse ",
tunif.ifaddr);
return false;
}
llarp::Addr lAddr(tunif.ifaddr);
m_OurIP = lAddr.xtohl();
m_NextIP = m_OurIP;
auto xmask = netmask_ipv4_bits(tunif.netmask);
auto baseaddr = m_OurIP & xmask;
m_MaxIP = baseaddr | ~xmask;
llarp::LogInfo(Name(), " set ", tunif.ifname, " to have address ", lAddr);
llarp::LogInfo(Name(), " allocated up to ", m_MaxIP);
return true;
}
bool
TunEndpoint::SetupNetworking()
{
llarp::LogInfo("Set Up networking for ", Name());
bool result = SetupTun();
#ifndef WIN32
m_TunSetupResult.set_value(
result); // now that NT has tun, we don't need the CPP guard
#endif
if(!NetworkIsIsolated())
{
// need to check to see if we have more than one hidden service
// well we'll only use the primary
// FIXME: detect number of hidden services
llarp::LogWarn(
"Only utilizing first hidden service for .loki look ups");
// because we can't find to the tun interface because we don't want it
// accessible on lokinet we can only bind one to loopback, and we can't
// really utilize anything other than port 53 we can't bind to our
// public interface, don't want it exploitable maybe we could detect if
// you have a private interface
}
llarp::LogInfo("TunDNS set up ", m_LocalResolverAddr, " to ",
m_UpstreamDNSAddr);
if(!llarp_dnsd_init(&this->dnsd, EndpointLogic(), EndpointNetLoop(),
m_LocalResolverAddr, m_UpstreamDNSAddr))
{
llarp::LogError("Couldnt init dns daemon");
}
// configure hook for .loki lookup
dnsd.intercept = &llarp_dotlokilookup_handler;
// set dotLokiLookup (this->dll) configuration
dnsd.user = &this->dll;
return result;
}
void
TunEndpoint::Tick(llarp_time_t now)
{
// call tun code in endpoint logic in case of network isolation
llarp_logic_queue_job(EndpointLogic(), {this, handleTickTun});
FlushSend();
Endpoint::Tick(now);
}
void
TunEndpoint::FlushSend()
{
m_UserToNetworkPktQueue.Process([&](net::IPv4Packet &pkt) {
auto itr = m_IPToAddr.find(pkt.dst());
if(itr == m_IPToAddr.end())
{
if(m_Exit)
{
pkt.UpdateIPv4PacketOnDst({0}, pkt.dst());
m_Exit->SendUpstreamTraffic(std::move(pkt));
}
else
llarp::LogWarn(Name(), " has no endpoint for ", pkt.dst());
return true;
}
// prepare packet for insertion into network
// this includes clearing IP addresses, recalculating checksums, etc
pkt.UpdateIPv4PacketOnSrc();
if(!SendToOrQueue(itr->second.data(), pkt.Buffer(),
service::eProtocolTraffic))
{
llarp::LogWarn(Name(), " did not flush packets");
}
return true;
});
}
bool
TunEndpoint::ProcessDataMessage(service::ProtocolMessage *msg)
{
// llarp::LogInfo("got packet from ", msg->sender.Addr());
auto themIP = ObtainIPForAddr(msg->sender.Addr().data());
// llarp::LogInfo("themIP ", themIP);
auto usIP = m_OurIP;
auto buf = llarp::Buffer(msg->payload);
if(m_NetworkToUserPktQueue.EmplaceIf(
[buf, themIP, usIP](net::IPv4Packet &pkt) -> bool {
// load
if(!pkt.Load(buf))
return false;
// filter out:
// - packets smaller than minimal IPv4 header
// - non-IPv4 packets
// - packets with weird src/dst addresses
// (0.0.0.0/8 but not 0.0.0.0)
// - packets with 0 src but non-0 dst and oposite
auto hdr = pkt.Header();
if(pkt.sz < sizeof(*hdr) || hdr->version != 4
|| (hdr->saddr != 0 && *(byte_t *)&(hdr->saddr) == 0)
|| (hdr->daddr != 0 && *(byte_t *)&(hdr->daddr) == 0)
|| ((hdr->saddr == 0) != (hdr->daddr == 0)))
{
return false;
}
// update packet to use proper addresses, recalc checksums
pkt.UpdateIPv4PacketOnDst(themIP, usIP);
return true;
}))
llarp::LogDebug(Name(), " handle data message ", msg->payload.size(),
" bytes from ", themIP);
return true;
}
huint32_t
TunEndpoint::GetIfAddr() const
{
return m_OurIP;
}
huint32_t
TunEndpoint::ObtainIPForAddr(const byte_t *addr)
{
llarp_time_t now = Now();
huint32_t nextIP = {0};
{
// previously allocated address
auto itr = m_AddrToIP.find(addr);
if(itr != m_AddrToIP.end())
{
// mark ip active
MarkIPActive(itr->second);
return itr->second;
}
}
// allocate new address
if(m_NextIP < m_MaxIP)
{
do
{
nextIP = ++m_NextIP;
} while(m_IPToAddr.find(nextIP) != m_IPToAddr.end()
&& m_NextIP < m_MaxIP);
if(nextIP < m_MaxIP)
{
m_AddrToIP.insert(std::make_pair(addr, nextIP));
m_IPToAddr.insert(std::make_pair(nextIP, addr));
llarp::LogInfo(Name(), " mapped ", addr, " to ", nextIP);
MarkIPActive(nextIP);
return nextIP;
}
}
// we are full
// expire least active ip
// TODO: prevent DoS
std::pair< huint32_t, llarp_time_t > oldest = {huint32_t{0}, 0};
// find oldest entry
auto itr = m_IPActivity.begin();
while(itr != m_IPActivity.end())
{
if(itr->second <= now)
{
if((now - itr->second) > oldest.second)
{
oldest.first = itr->first;
oldest.second = itr->second;
}
}
++itr;
}
// remap address
m_IPToAddr[oldest.first] = addr;
m_AddrToIP[addr] = oldest.first;
nextIP = oldest.first;
// mark ip active
m_IPActivity[nextIP] = std::max(m_IPActivity[nextIP], now);
return nextIP;
}
bool
TunEndpoint::HasRemoteForIP(huint32_t ip) const
{
return m_IPToAddr.find(ip) != m_IPToAddr.end();
}
void
TunEndpoint::MarkIPActive(huint32_t ip)
{
m_IPActivity[ip] = std::max(Now(), m_IPActivity[ip]);
}
void
TunEndpoint::MarkIPActiveForever(huint32_t ip)
{
m_IPActivity[ip] = std::numeric_limits< uint64_t >::max();
}
void
TunEndpoint::handleTickTun(void *u)
{
TunEndpoint *self = static_cast< TunEndpoint * >(u);
self->TickTun(self->Now());
}
void
TunEndpoint::TickTun(__attribute__((unused)) llarp_time_t now)
{
// called in the isolated thread
}
void
TunEndpoint::tunifBeforeWrite(llarp_tun_io *tun)
{
// called in the isolated network thread
TunEndpoint *self = static_cast< TunEndpoint * >(tun->user);
self->m_NetworkToUserPktQueue.Process([tun](net::IPv4Packet &pkt) {
if(!llarp_ev_tun_async_write(tun, pkt.buf, pkt.sz))
llarp::LogWarn("packet dropped");
});
if(self->m_UserToNetworkPktQueue.Size())
llarp_logic_queue_job(self->RouterLogic(), {self, &handleNetSend});
}
void
TunEndpoint::handleNetSend(void *user)
{
TunEndpoint *self = static_cast< TunEndpoint * >(user);
self->FlushSend();
}
void
TunEndpoint::tunifRecvPkt(llarp_tun_io *tun, const void *buf, ssize_t sz)
{
// called for every packet read from user in isolated network thread
TunEndpoint *self = static_cast< TunEndpoint * >(tun->user);
llarp::LogDebug("got pkt ", sz, " bytes");
if(!self->m_UserToNetworkPktQueue.EmplaceIf(
[buf, sz](net::IPv4Packet &pkt) -> bool {
return pkt.Load(llarp::InitBuffer(buf, sz))
&& pkt.Header()->version == 4;
}))
{
llarp::LogInfo("Failed to parse ipv4 packet");
llarp::DumpBuffer(llarp::InitBuffer(buf, sz));
}
}
TunEndpoint::~TunEndpoint()
{
}
} // namespace handlers
} // namespace llarp