lokinet/llarp/ev/ev_win32.cpp

240 lines
6.4 KiB
C++

#include <ev/ev_win32.hpp>
#ifdef _WIN32
#include <util/logging/logger.hpp>
// a single event queue for the TUN interface
static HANDLE tun_event_queue = INVALID_HANDLE_VALUE;
// we hand the kernel our thread handles to process completion events
static HANDLE* kThreadPool;
static int poolSize;
static CRITICAL_SECTION HandlerMtx;
// list of TUN listeners (useful for exits or other nodes with multiple TUNs)
std::list< win32_tun_io* > tun_listeners;
void
begin_tun_loop(int nThreads, llarp_ev_loop* loop)
{
kThreadPool = new HANDLE[nThreads];
for(int i = 0; i < nThreads; ++i)
{
kThreadPool[i] = CreateThread(nullptr, 0, &tun_ev_loop, loop, 0, nullptr);
}
llarp::LogInfo("created ", nThreads, " threads for TUN event queue");
poolSize = nThreads;
}
// this one is called from the TUN handler
bool
win32_tun_io::queue_write(const byte_t* buf, size_t sz)
{
do_write((void*)buf, sz);
return true;
}
bool
win32_tun_io::setup()
{
// Create a critical section to synchronise access to the TUN handler.
// This *probably* has the effect of making packets move in order now
// as only one IOCP thread will have access to the TUN handler at a
// time
InitializeCriticalSection(&HandlerMtx);
if(tuntap_start(tunif, TUNTAP_MODE_TUNNEL, 0) == -1)
{
llarp::LogWarn("failed to start interface");
return false;
}
if(tuntap_up(tunif) == -1)
{
char ebuf[1024];
int err = GetLastError();
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, LANG_NEUTRAL, ebuf,
1024, nullptr);
llarp::LogWarn("failed to put interface up: ", ebuf);
return false;
}
tunif->bindaddr = t->dnsaddr;
if(tuntap_set_ip(tunif, t->ifaddr, t->ifaddr, t->netmask) == -1)
{
llarp::LogWarn("failed to set ip");
return false;
}
if(tunif->tun_fd == INVALID_HANDLE_VALUE)
return false;
return true;
}
// first TUN device gets to set up the event port
bool
win32_tun_io::add_ev(llarp_ev_loop* loop)
{
if(tun_event_queue == INVALID_HANDLE_VALUE)
{
SYSTEM_INFO sys_info;
GetSystemInfo(&sys_info);
unsigned long numCPU = sys_info.dwNumberOfProcessors;
// let the system handle 2x the number of CPUs or hardware
// threads
tun_event_queue = CreateIoCompletionPort(tunif->tun_fd, nullptr,
(ULONG_PTR)this, numCPU * 2);
begin_tun_loop(numCPU * 2, loop);
}
else
CreateIoCompletionPort(tunif->tun_fd, tun_event_queue, (ULONG_PTR)this, 0);
// we're already non-blocking
// add to list
tun_listeners.push_back(this);
read(readbuf, 4096);
return true;
}
// places data in event queue for kernel to process
void
win32_tun_io::do_write(void* data, size_t sz)
{
asio_evt_pkt* pkt = new asio_evt_pkt;
pkt->buf = data;
pkt->sz = sz;
pkt->write = true;
memset(&pkt->pkt, '\0', sizeof(pkt->pkt));
WriteFile(tunif->tun_fd, data, sz, nullptr, &pkt->pkt);
}
// while this one is called from the event loop
// eventually comes back and calls queue_write()
void
win32_tun_io::flush_write()
{
if(t->before_write)
t->before_write(t);
}
void
win32_tun_io::read(byte_t* buf, size_t sz)
{
asio_evt_pkt* pkt = new asio_evt_pkt;
pkt->buf = buf;
memset(&pkt->pkt, '\0', sizeof(OVERLAPPED));
pkt->sz = sz;
pkt->write = false;
ReadFile(tunif->tun_fd, buf, sz, nullptr, &pkt->pkt);
}
// and now the event loop itself
extern "C" DWORD FAR PASCAL
tun_ev_loop(void* u)
{
llarp_ev_loop* logic = static_cast< llarp_ev_loop* >(u);
DWORD size = 0;
OVERLAPPED* ovl = nullptr;
ULONG_PTR listener = 0;
asio_evt_pkt* pkt = nullptr;
BOOL alert;
while(true)
{
alert = GetQueuedCompletionStatus(tun_event_queue, &size, &listener, &ovl,
EV_TICK_INTERVAL);
if(!alert)
{
// tick listeners on io timeout, this is required to be done every tick
// cycle regardless of any io being done, this manages the internal state
// of the tun logic
for(const auto& tun : tun_listeners)
{
logic->call_soon([tun]() {
if(tun->t->tick)
tun->t->tick(tun->t);
tun->flush_write();
});
}
continue; // let's go at it once more
}
if(listener == (ULONG_PTR)~0)
break;
// if we're here, then we got something interesting :>
pkt = (asio_evt_pkt*)ovl;
win32_tun_io* ev = reinterpret_cast< win32_tun_io* >(listener);
if(!pkt->write)
{
// llarp::LogInfo("read tun ", size, " bytes, pass to handler");
// skip if our buffer remains empty
// (if our buffer is empty, we don't even have a valid IP frame.
// just throw it out)
if(*(byte_t*)pkt->buf == '\0')
{
delete pkt;
continue;
}
// EnterCriticalSection(&HandlerMtx);
logic->call_soon([pkt, size, ev]() {
if(ev->t->recvpkt)
ev->t->recvpkt(ev->t, llarp_buffer_t(pkt->buf, size));
delete pkt;
});
ev->read(ev->readbuf, sizeof(ev->readbuf));
// LeaveCriticalSection(&HandlerMtx);
}
else
{
// ok let's queue another read!
// EnterCriticalSection(&HandlerMtx);
ev->read(ev->readbuf, sizeof(ev->readbuf));
// LeaveCriticalSection(&HandlerMtx);
}
logic->call_soon([ev]() {
if(ev->t->tick)
ev->t->tick(ev->t);
ev->flush_write();
});
}
llarp::LogDebug("exit TUN event loop thread from system managed thread pool");
return 0;
}
void
exit_tun_loop()
{
if(kThreadPool)
{
// kill the kernel's thread pool
// int i = (&kThreadPool)[1] - kThreadPool; // get the size of our thread
// pool
llarp::LogInfo("closing ", poolSize, " threads");
// if we get all-ones in the queue, thread exits, and we clean up
for(int j = 0; j < poolSize; ++j)
PostQueuedCompletionStatus(tun_event_queue, 0, ~0, nullptr);
WaitForMultipleObjects(poolSize, kThreadPool, TRUE, INFINITE);
for(int j = 0; j < poolSize; ++j)
CloseHandle(kThreadPool[j]);
delete[] kThreadPool;
kThreadPool = nullptr;
// the IOCP refcount is decreased each time an associated fd
// is closed
// the fds are closed in their destructors
// once we get to zero, we can safely close the event port
auto itr = tun_listeners.begin();
while(itr != tun_listeners.end())
{
delete(*itr);
itr = tun_listeners.erase(itr);
}
CloseHandle(tun_event_queue);
DeleteCriticalSection(&HandlerMtx);
}
}
#endif