mirror of
https://github.com/oxen-io/lokinet.git
synced 2024-10-29 11:05:43 +00:00
1203 lines
41 KiB
C++
1203 lines
41 KiB
C++
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file implements some commonly used actions.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|
|
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|
|
|
|
#ifndef _WIN32_WCE
|
|
# include <errno.h>
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "gmock/internal/gmock-internal-utils.h"
|
|
#include "gmock/internal/gmock-port.h"
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4100)
|
|
#endif
|
|
|
|
namespace testing {
|
|
|
|
// To implement an action Foo, define:
|
|
// 1. a class FooAction that implements the ActionInterface interface, and
|
|
// 2. a factory function that creates an Action object from a
|
|
// const FooAction*.
|
|
//
|
|
// The two-level delegation design follows that of Matcher, providing
|
|
// consistency for extension developers. It also eases ownership
|
|
// management as Action objects can now be copied like plain values.
|
|
|
|
namespace internal {
|
|
|
|
// BuiltInDefaultValueGetter<T, true>::Get() returns a
|
|
// default-constructed T value. BuiltInDefaultValueGetter<T,
|
|
// false>::Get() crashes with an error.
|
|
//
|
|
// This primary template is used when kDefaultConstructible is true.
|
|
template <typename T, bool kDefaultConstructible>
|
|
struct BuiltInDefaultValueGetter {
|
|
static T Get() { return T(); }
|
|
};
|
|
template <typename T>
|
|
struct BuiltInDefaultValueGetter<T, false> {
|
|
static T Get() {
|
|
Assert(false, __FILE__, __LINE__,
|
|
"Default action undefined for the function return type.");
|
|
return internal::Invalid<T>();
|
|
// The above statement will never be reached, but is required in
|
|
// order for this function to compile.
|
|
}
|
|
};
|
|
|
|
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
|
|
// for type T, which is NULL when T is a raw pointer type, 0 when T is
|
|
// a numeric type, false when T is bool, or "" when T is string or
|
|
// std::string. In addition, in C++11 and above, it turns a
|
|
// default-constructed T value if T is default constructible. For any
|
|
// other type T, the built-in default T value is undefined, and the
|
|
// function will abort the process.
|
|
template <typename T>
|
|
class BuiltInDefaultValue {
|
|
public:
|
|
// This function returns true iff type T has a built-in default value.
|
|
static bool Exists() {
|
|
return ::std::is_default_constructible<T>::value;
|
|
}
|
|
|
|
static T Get() {
|
|
return BuiltInDefaultValueGetter<
|
|
T, ::std::is_default_constructible<T>::value>::Get();
|
|
}
|
|
};
|
|
|
|
// This partial specialization says that we use the same built-in
|
|
// default value for T and const T.
|
|
template <typename T>
|
|
class BuiltInDefaultValue<const T> {
|
|
public:
|
|
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
|
|
static T Get() { return BuiltInDefaultValue<T>::Get(); }
|
|
};
|
|
|
|
// This partial specialization defines the default values for pointer
|
|
// types.
|
|
template <typename T>
|
|
class BuiltInDefaultValue<T*> {
|
|
public:
|
|
static bool Exists() { return true; }
|
|
static T* Get() { return nullptr; }
|
|
};
|
|
|
|
// The following specializations define the default values for
|
|
// specific types we care about.
|
|
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
|
|
template <> \
|
|
class BuiltInDefaultValue<type> { \
|
|
public: \
|
|
static bool Exists() { return true; } \
|
|
static type Get() { return value; } \
|
|
}
|
|
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
|
|
#if GTEST_HAS_GLOBAL_STRING
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
|
|
#endif // GTEST_HAS_GLOBAL_STRING
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
|
|
|
|
// There's no need for a default action for signed wchar_t, as that
|
|
// type is the same as wchar_t for gcc, and invalid for MSVC.
|
|
//
|
|
// There's also no need for a default action for unsigned wchar_t, as
|
|
// that type is the same as unsigned int for gcc, and invalid for
|
|
// MSVC.
|
|
#if GMOCK_WCHAR_T_IS_NATIVE_
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
|
|
#endif
|
|
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
|
|
|
|
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
|
|
|
|
} // namespace internal
|
|
|
|
// When an unexpected function call is encountered, Google Mock will
|
|
// let it return a default value if the user has specified one for its
|
|
// return type, or if the return type has a built-in default value;
|
|
// otherwise Google Mock won't know what value to return and will have
|
|
// to abort the process.
|
|
//
|
|
// The DefaultValue<T> class allows a user to specify the
|
|
// default value for a type T that is both copyable and publicly
|
|
// destructible (i.e. anything that can be used as a function return
|
|
// type). The usage is:
|
|
//
|
|
// // Sets the default value for type T to be foo.
|
|
// DefaultValue<T>::Set(foo);
|
|
template <typename T>
|
|
class DefaultValue {
|
|
public:
|
|
// Sets the default value for type T; requires T to be
|
|
// copy-constructable and have a public destructor.
|
|
static void Set(T x) {
|
|
delete producer_;
|
|
producer_ = new FixedValueProducer(x);
|
|
}
|
|
|
|
// Provides a factory function to be called to generate the default value.
|
|
// This method can be used even if T is only move-constructible, but it is not
|
|
// limited to that case.
|
|
typedef T (*FactoryFunction)();
|
|
static void SetFactory(FactoryFunction factory) {
|
|
delete producer_;
|
|
producer_ = new FactoryValueProducer(factory);
|
|
}
|
|
|
|
// Unsets the default value for type T.
|
|
static void Clear() {
|
|
delete producer_;
|
|
producer_ = nullptr;
|
|
}
|
|
|
|
// Returns true iff the user has set the default value for type T.
|
|
static bool IsSet() { return producer_ != nullptr; }
|
|
|
|
// Returns true if T has a default return value set by the user or there
|
|
// exists a built-in default value.
|
|
static bool Exists() {
|
|
return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
|
|
}
|
|
|
|
// Returns the default value for type T if the user has set one;
|
|
// otherwise returns the built-in default value. Requires that Exists()
|
|
// is true, which ensures that the return value is well-defined.
|
|
static T Get() {
|
|
return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
|
|
: producer_->Produce();
|
|
}
|
|
|
|
private:
|
|
class ValueProducer {
|
|
public:
|
|
virtual ~ValueProducer() {}
|
|
virtual T Produce() = 0;
|
|
};
|
|
|
|
class FixedValueProducer : public ValueProducer {
|
|
public:
|
|
explicit FixedValueProducer(T value) : value_(value) {}
|
|
T Produce() override { return value_; }
|
|
|
|
private:
|
|
const T value_;
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
|
|
};
|
|
|
|
class FactoryValueProducer : public ValueProducer {
|
|
public:
|
|
explicit FactoryValueProducer(FactoryFunction factory)
|
|
: factory_(factory) {}
|
|
T Produce() override { return factory_(); }
|
|
|
|
private:
|
|
const FactoryFunction factory_;
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
|
|
};
|
|
|
|
static ValueProducer* producer_;
|
|
};
|
|
|
|
// This partial specialization allows a user to set default values for
|
|
// reference types.
|
|
template <typename T>
|
|
class DefaultValue<T&> {
|
|
public:
|
|
// Sets the default value for type T&.
|
|
static void Set(T& x) { // NOLINT
|
|
address_ = &x;
|
|
}
|
|
|
|
// Unsets the default value for type T&.
|
|
static void Clear() { address_ = nullptr; }
|
|
|
|
// Returns true iff the user has set the default value for type T&.
|
|
static bool IsSet() { return address_ != nullptr; }
|
|
|
|
// Returns true if T has a default return value set by the user or there
|
|
// exists a built-in default value.
|
|
static bool Exists() {
|
|
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
|
|
}
|
|
|
|
// Returns the default value for type T& if the user has set one;
|
|
// otherwise returns the built-in default value if there is one;
|
|
// otherwise aborts the process.
|
|
static T& Get() {
|
|
return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
|
|
: *address_;
|
|
}
|
|
|
|
private:
|
|
static T* address_;
|
|
};
|
|
|
|
// This specialization allows DefaultValue<void>::Get() to
|
|
// compile.
|
|
template <>
|
|
class DefaultValue<void> {
|
|
public:
|
|
static bool Exists() { return true; }
|
|
static void Get() {}
|
|
};
|
|
|
|
// Points to the user-set default value for type T.
|
|
template <typename T>
|
|
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
|
|
|
|
// Points to the user-set default value for type T&.
|
|
template <typename T>
|
|
T* DefaultValue<T&>::address_ = nullptr;
|
|
|
|
// Implement this interface to define an action for function type F.
|
|
template <typename F>
|
|
class ActionInterface {
|
|
public:
|
|
typedef typename internal::Function<F>::Result Result;
|
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
ActionInterface() {}
|
|
virtual ~ActionInterface() {}
|
|
|
|
// Performs the action. This method is not const, as in general an
|
|
// action can have side effects and be stateful. For example, a
|
|
// get-the-next-element-from-the-collection action will need to
|
|
// remember the current element.
|
|
virtual Result Perform(const ArgumentTuple& args) = 0;
|
|
|
|
private:
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
|
|
};
|
|
|
|
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
|
|
// object that represents an action to be taken when a mock function
|
|
// of type F is called. The implementation of Action<T> is just a
|
|
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
|
|
// You can view an object implementing ActionInterface<F> as a
|
|
// concrete action (including its current state), and an Action<F>
|
|
// object as a handle to it.
|
|
template <typename F>
|
|
class Action {
|
|
// Adapter class to allow constructing Action from a legacy ActionInterface.
|
|
// New code should create Actions from functors instead.
|
|
struct ActionAdapter {
|
|
// Adapter must be copyable to satisfy std::function requirements.
|
|
::std::shared_ptr<ActionInterface<F>> impl_;
|
|
|
|
template <typename... Args>
|
|
typename internal::Function<F>::Result operator()(Args&&... args) {
|
|
return impl_->Perform(
|
|
::std::forward_as_tuple(::std::forward<Args>(args)...));
|
|
}
|
|
};
|
|
|
|
public:
|
|
typedef typename internal::Function<F>::Result Result;
|
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
// Constructs a null Action. Needed for storing Action objects in
|
|
// STL containers.
|
|
Action() {}
|
|
|
|
// Construct an Action from a specified callable.
|
|
// This cannot take std::function directly, because then Action would not be
|
|
// directly constructible from lambda (it would require two conversions).
|
|
template <typename G,
|
|
typename = typename ::std::enable_if<
|
|
::std::is_constructible<::std::function<F>, G>::value>::type>
|
|
Action(G&& fun) : fun_(::std::forward<G>(fun)) {} // NOLINT
|
|
|
|
// Constructs an Action from its implementation.
|
|
explicit Action(ActionInterface<F>* impl)
|
|
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
|
|
|
|
// This constructor allows us to turn an Action<Func> object into an
|
|
// Action<F>, as long as F's arguments can be implicitly converted
|
|
// to Func's and Func's return type can be implicitly converted to F's.
|
|
template <typename Func>
|
|
explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
|
|
|
|
// Returns true iff this is the DoDefault() action.
|
|
bool IsDoDefault() const { return fun_ == nullptr; }
|
|
|
|
// Performs the action. Note that this method is const even though
|
|
// the corresponding method in ActionInterface is not. The reason
|
|
// is that a const Action<F> means that it cannot be re-bound to
|
|
// another concrete action, not that the concrete action it binds to
|
|
// cannot change state. (Think of the difference between a const
|
|
// pointer and a pointer to const.)
|
|
Result Perform(ArgumentTuple args) const {
|
|
if (IsDoDefault()) {
|
|
internal::IllegalDoDefault(__FILE__, __LINE__);
|
|
}
|
|
return internal::Apply(fun_, ::std::move(args));
|
|
}
|
|
|
|
private:
|
|
template <typename G>
|
|
friend class Action;
|
|
|
|
// fun_ is an empty function iff this is the DoDefault() action.
|
|
::std::function<F> fun_;
|
|
};
|
|
|
|
// The PolymorphicAction class template makes it easy to implement a
|
|
// polymorphic action (i.e. an action that can be used in mock
|
|
// functions of than one type, e.g. Return()).
|
|
//
|
|
// To define a polymorphic action, a user first provides a COPYABLE
|
|
// implementation class that has a Perform() method template:
|
|
//
|
|
// class FooAction {
|
|
// public:
|
|
// template <typename Result, typename ArgumentTuple>
|
|
// Result Perform(const ArgumentTuple& args) const {
|
|
// // Processes the arguments and returns a result, using
|
|
// // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
|
|
// }
|
|
// ...
|
|
// };
|
|
//
|
|
// Then the user creates the polymorphic action using
|
|
// MakePolymorphicAction(object) where object has type FooAction. See
|
|
// the definition of Return(void) and SetArgumentPointee<N>(value) for
|
|
// complete examples.
|
|
template <typename Impl>
|
|
class PolymorphicAction {
|
|
public:
|
|
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
|
|
|
|
template <typename F>
|
|
operator Action<F>() const {
|
|
return Action<F>(new MonomorphicImpl<F>(impl_));
|
|
}
|
|
|
|
private:
|
|
template <typename F>
|
|
class MonomorphicImpl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename internal::Function<F>::Result Result;
|
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
|
|
|
|
Result Perform(const ArgumentTuple& args) override {
|
|
return impl_.template Perform<Result>(args);
|
|
}
|
|
|
|
private:
|
|
Impl impl_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
|
|
};
|
|
|
|
Impl impl_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
|
|
};
|
|
|
|
// Creates an Action from its implementation and returns it. The
|
|
// created Action object owns the implementation.
|
|
template <typename F>
|
|
Action<F> MakeAction(ActionInterface<F>* impl) {
|
|
return Action<F>(impl);
|
|
}
|
|
|
|
// Creates a polymorphic action from its implementation. This is
|
|
// easier to use than the PolymorphicAction<Impl> constructor as it
|
|
// doesn't require you to explicitly write the template argument, e.g.
|
|
//
|
|
// MakePolymorphicAction(foo);
|
|
// vs
|
|
// PolymorphicAction<TypeOfFoo>(foo);
|
|
template <typename Impl>
|
|
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
|
|
return PolymorphicAction<Impl>(impl);
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// Helper struct to specialize ReturnAction to execute a move instead of a copy
|
|
// on return. Useful for move-only types, but could be used on any type.
|
|
template <typename T>
|
|
struct ByMoveWrapper {
|
|
explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
|
|
T payload;
|
|
};
|
|
|
|
// Implements the polymorphic Return(x) action, which can be used in
|
|
// any function that returns the type of x, regardless of the argument
|
|
// types.
|
|
//
|
|
// Note: The value passed into Return must be converted into
|
|
// Function<F>::Result when this action is cast to Action<F> rather than
|
|
// when that action is performed. This is important in scenarios like
|
|
//
|
|
// MOCK_METHOD1(Method, T(U));
|
|
// ...
|
|
// {
|
|
// Foo foo;
|
|
// X x(&foo);
|
|
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
|
|
// }
|
|
//
|
|
// In the example above the variable x holds reference to foo which leaves
|
|
// scope and gets destroyed. If copying X just copies a reference to foo,
|
|
// that copy will be left with a hanging reference. If conversion to T
|
|
// makes a copy of foo, the above code is safe. To support that scenario, we
|
|
// need to make sure that the type conversion happens inside the EXPECT_CALL
|
|
// statement, and conversion of the result of Return to Action<T(U)> is a
|
|
// good place for that.
|
|
//
|
|
// The real life example of the above scenario happens when an invocation
|
|
// of gtl::Container() is passed into Return.
|
|
//
|
|
template <typename R>
|
|
class ReturnAction {
|
|
public:
|
|
// Constructs a ReturnAction object from the value to be returned.
|
|
// 'value' is passed by value instead of by const reference in order
|
|
// to allow Return("string literal") to compile.
|
|
explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
|
|
|
|
// This template type conversion operator allows Return(x) to be
|
|
// used in ANY function that returns x's type.
|
|
template <typename F>
|
|
operator Action<F>() const { // NOLINT
|
|
// Assert statement belongs here because this is the best place to verify
|
|
// conditions on F. It produces the clearest error messages
|
|
// in most compilers.
|
|
// Impl really belongs in this scope as a local class but can't
|
|
// because MSVC produces duplicate symbols in different translation units
|
|
// in this case. Until MS fixes that bug we put Impl into the class scope
|
|
// and put the typedef both here (for use in assert statement) and
|
|
// in the Impl class. But both definitions must be the same.
|
|
typedef typename Function<F>::Result Result;
|
|
GTEST_COMPILE_ASSERT_(
|
|
!is_reference<Result>::value,
|
|
use_ReturnRef_instead_of_Return_to_return_a_reference);
|
|
static_assert(!std::is_void<Result>::value,
|
|
"Can't use Return() on an action expected to return `void`.");
|
|
return Action<F>(new Impl<R, F>(value_));
|
|
}
|
|
|
|
private:
|
|
// Implements the Return(x) action for a particular function type F.
|
|
template <typename R_, typename F>
|
|
class Impl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename Function<F>::Result Result;
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
// The implicit cast is necessary when Result has more than one
|
|
// single-argument constructor (e.g. Result is std::vector<int>) and R
|
|
// has a type conversion operator template. In that case, value_(value)
|
|
// won't compile as the compiler doesn't known which constructor of
|
|
// Result to call. ImplicitCast_ forces the compiler to convert R to
|
|
// Result without considering explicit constructors, thus resolving the
|
|
// ambiguity. value_ is then initialized using its copy constructor.
|
|
explicit Impl(const std::shared_ptr<R>& value)
|
|
: value_before_cast_(*value),
|
|
value_(ImplicitCast_<Result>(value_before_cast_)) {}
|
|
|
|
Result Perform(const ArgumentTuple&) override { return value_; }
|
|
|
|
private:
|
|
GTEST_COMPILE_ASSERT_(!is_reference<Result>::value,
|
|
Result_cannot_be_a_reference_type);
|
|
// We save the value before casting just in case it is being cast to a
|
|
// wrapper type.
|
|
R value_before_cast_;
|
|
Result value_;
|
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
|
|
};
|
|
|
|
// Partially specialize for ByMoveWrapper. This version of ReturnAction will
|
|
// move its contents instead.
|
|
template <typename R_, typename F>
|
|
class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
|
|
public:
|
|
typedef typename Function<F>::Result Result;
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit Impl(const std::shared_ptr<R>& wrapper)
|
|
: performed_(false), wrapper_(wrapper) {}
|
|
|
|
Result Perform(const ArgumentTuple&) override {
|
|
GTEST_CHECK_(!performed_)
|
|
<< "A ByMove() action should only be performed once.";
|
|
performed_ = true;
|
|
return std::move(wrapper_->payload);
|
|
}
|
|
|
|
private:
|
|
bool performed_;
|
|
const std::shared_ptr<R> wrapper_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
const std::shared_ptr<R> value_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(ReturnAction);
|
|
};
|
|
|
|
// Implements the ReturnNull() action.
|
|
class ReturnNullAction {
|
|
public:
|
|
// Allows ReturnNull() to be used in any pointer-returning function. In C++11
|
|
// this is enforced by returning nullptr, and in non-C++11 by asserting a
|
|
// pointer type on compile time.
|
|
template <typename Result, typename ArgumentTuple>
|
|
static Result Perform(const ArgumentTuple&) {
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
// Implements the Return() action.
|
|
class ReturnVoidAction {
|
|
public:
|
|
// Allows Return() to be used in any void-returning function.
|
|
template <typename Result, typename ArgumentTuple>
|
|
static void Perform(const ArgumentTuple&) {
|
|
CompileAssertTypesEqual<void, Result>();
|
|
}
|
|
};
|
|
|
|
// Implements the polymorphic ReturnRef(x) action, which can be used
|
|
// in any function that returns a reference to the type of x,
|
|
// regardless of the argument types.
|
|
template <typename T>
|
|
class ReturnRefAction {
|
|
public:
|
|
// Constructs a ReturnRefAction object from the reference to be returned.
|
|
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
|
|
|
|
// This template type conversion operator allows ReturnRef(x) to be
|
|
// used in ANY function that returns a reference to x's type.
|
|
template <typename F>
|
|
operator Action<F>() const {
|
|
typedef typename Function<F>::Result Result;
|
|
// Asserts that the function return type is a reference. This
|
|
// catches the user error of using ReturnRef(x) when Return(x)
|
|
// should be used, and generates some helpful error message.
|
|
GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
|
|
use_Return_instead_of_ReturnRef_to_return_a_value);
|
|
return Action<F>(new Impl<F>(ref_));
|
|
}
|
|
|
|
private:
|
|
// Implements the ReturnRef(x) action for a particular function type F.
|
|
template <typename F>
|
|
class Impl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename Function<F>::Result Result;
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit Impl(T& ref) : ref_(ref) {} // NOLINT
|
|
|
|
Result Perform(const ArgumentTuple&) override { return ref_; }
|
|
|
|
private:
|
|
T& ref_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
T& ref_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
|
|
};
|
|
|
|
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
|
|
// used in any function that returns a reference to the type of x,
|
|
// regardless of the argument types.
|
|
template <typename T>
|
|
class ReturnRefOfCopyAction {
|
|
public:
|
|
// Constructs a ReturnRefOfCopyAction object from the reference to
|
|
// be returned.
|
|
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
|
|
|
|
// This template type conversion operator allows ReturnRefOfCopy(x) to be
|
|
// used in ANY function that returns a reference to x's type.
|
|
template <typename F>
|
|
operator Action<F>() const {
|
|
typedef typename Function<F>::Result Result;
|
|
// Asserts that the function return type is a reference. This
|
|
// catches the user error of using ReturnRefOfCopy(x) when Return(x)
|
|
// should be used, and generates some helpful error message.
|
|
GTEST_COMPILE_ASSERT_(
|
|
internal::is_reference<Result>::value,
|
|
use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
|
|
return Action<F>(new Impl<F>(value_));
|
|
}
|
|
|
|
private:
|
|
// Implements the ReturnRefOfCopy(x) action for a particular function type F.
|
|
template <typename F>
|
|
class Impl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename Function<F>::Result Result;
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit Impl(const T& value) : value_(value) {} // NOLINT
|
|
|
|
Result Perform(const ArgumentTuple&) override { return value_; }
|
|
|
|
private:
|
|
T value_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
const T value_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
|
|
};
|
|
|
|
// Implements the polymorphic DoDefault() action.
|
|
class DoDefaultAction {
|
|
public:
|
|
// This template type conversion operator allows DoDefault() to be
|
|
// used in any function.
|
|
template <typename F>
|
|
operator Action<F>() const { return Action<F>(); } // NOLINT
|
|
};
|
|
|
|
// Implements the Assign action to set a given pointer referent to a
|
|
// particular value.
|
|
template <typename T1, typename T2>
|
|
class AssignAction {
|
|
public:
|
|
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
|
|
|
|
template <typename Result, typename ArgumentTuple>
|
|
void Perform(const ArgumentTuple& /* args */) const {
|
|
*ptr_ = value_;
|
|
}
|
|
|
|
private:
|
|
T1* const ptr_;
|
|
const T2 value_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(AssignAction);
|
|
};
|
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
// Implements the SetErrnoAndReturn action to simulate return from
|
|
// various system calls and libc functions.
|
|
template <typename T>
|
|
class SetErrnoAndReturnAction {
|
|
public:
|
|
SetErrnoAndReturnAction(int errno_value, T result)
|
|
: errno_(errno_value),
|
|
result_(result) {}
|
|
template <typename Result, typename ArgumentTuple>
|
|
Result Perform(const ArgumentTuple& /* args */) const {
|
|
errno = errno_;
|
|
return result_;
|
|
}
|
|
|
|
private:
|
|
const int errno_;
|
|
const T result_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
|
|
};
|
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
// Implements the SetArgumentPointee<N>(x) action for any function
|
|
// whose N-th argument (0-based) is a pointer to x's type. The
|
|
// template parameter kIsProto is true iff type A is ProtocolMessage,
|
|
// proto2::Message, or a sub-class of those.
|
|
template <size_t N, typename A, bool kIsProto>
|
|
class SetArgumentPointeeAction {
|
|
public:
|
|
// Constructs an action that sets the variable pointed to by the
|
|
// N-th function argument to 'value'.
|
|
explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
|
|
|
|
template <typename Result, typename ArgumentTuple>
|
|
void Perform(const ArgumentTuple& args) const {
|
|
CompileAssertTypesEqual<void, Result>();
|
|
*::std::get<N>(args) = value_;
|
|
}
|
|
|
|
private:
|
|
const A value_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
|
|
};
|
|
|
|
template <size_t N, typename Proto>
|
|
class SetArgumentPointeeAction<N, Proto, true> {
|
|
public:
|
|
// Constructs an action that sets the variable pointed to by the
|
|
// N-th function argument to 'proto'. Both ProtocolMessage and
|
|
// proto2::Message have the CopyFrom() method, so the same
|
|
// implementation works for both.
|
|
explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
|
|
proto_->CopyFrom(proto);
|
|
}
|
|
|
|
template <typename Result, typename ArgumentTuple>
|
|
void Perform(const ArgumentTuple& args) const {
|
|
CompileAssertTypesEqual<void, Result>();
|
|
::std::get<N>(args)->CopyFrom(*proto_);
|
|
}
|
|
|
|
private:
|
|
const std::shared_ptr<Proto> proto_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
|
|
};
|
|
|
|
// Implements the Invoke(object_ptr, &Class::Method) action.
|
|
template <class Class, typename MethodPtr>
|
|
struct InvokeMethodAction {
|
|
Class* const obj_ptr;
|
|
const MethodPtr method_ptr;
|
|
|
|
template <typename... Args>
|
|
auto operator()(Args&&... args) const
|
|
-> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
|
|
return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
|
|
}
|
|
};
|
|
|
|
// Implements the InvokeWithoutArgs(f) action. The template argument
|
|
// FunctionImpl is the implementation type of f, which can be either a
|
|
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
|
|
// Action<F> as long as f's type is compatible with F.
|
|
template <typename FunctionImpl>
|
|
struct InvokeWithoutArgsAction {
|
|
FunctionImpl function_impl;
|
|
|
|
// Allows InvokeWithoutArgs(f) to be used as any action whose type is
|
|
// compatible with f.
|
|
template <typename... Args>
|
|
auto operator()(const Args&...) -> decltype(function_impl()) {
|
|
return function_impl();
|
|
}
|
|
};
|
|
|
|
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
|
|
template <class Class, typename MethodPtr>
|
|
struct InvokeMethodWithoutArgsAction {
|
|
Class* const obj_ptr;
|
|
const MethodPtr method_ptr;
|
|
|
|
using ReturnType = typename std::result_of<MethodPtr(Class*)>::type;
|
|
|
|
template <typename... Args>
|
|
ReturnType operator()(const Args&...) const {
|
|
return (obj_ptr->*method_ptr)();
|
|
}
|
|
};
|
|
|
|
// Implements the IgnoreResult(action) action.
|
|
template <typename A>
|
|
class IgnoreResultAction {
|
|
public:
|
|
explicit IgnoreResultAction(const A& action) : action_(action) {}
|
|
|
|
template <typename F>
|
|
operator Action<F>() const {
|
|
// Assert statement belongs here because this is the best place to verify
|
|
// conditions on F. It produces the clearest error messages
|
|
// in most compilers.
|
|
// Impl really belongs in this scope as a local class but can't
|
|
// because MSVC produces duplicate symbols in different translation units
|
|
// in this case. Until MS fixes that bug we put Impl into the class scope
|
|
// and put the typedef both here (for use in assert statement) and
|
|
// in the Impl class. But both definitions must be the same.
|
|
typedef typename internal::Function<F>::Result Result;
|
|
|
|
// Asserts at compile time that F returns void.
|
|
CompileAssertTypesEqual<void, Result>();
|
|
|
|
return Action<F>(new Impl<F>(action_));
|
|
}
|
|
|
|
private:
|
|
template <typename F>
|
|
class Impl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename internal::Function<F>::Result Result;
|
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit Impl(const A& action) : action_(action) {}
|
|
|
|
void Perform(const ArgumentTuple& args) override {
|
|
// Performs the action and ignores its result.
|
|
action_.Perform(args);
|
|
}
|
|
|
|
private:
|
|
// Type OriginalFunction is the same as F except that its return
|
|
// type is IgnoredValue.
|
|
typedef typename internal::Function<F>::MakeResultIgnoredValue
|
|
OriginalFunction;
|
|
|
|
const Action<OriginalFunction> action_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
const A action_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
|
|
};
|
|
|
|
template <typename InnerAction, size_t... I>
|
|
struct WithArgsAction {
|
|
InnerAction action;
|
|
|
|
// The inner action could be anything convertible to Action<X>.
|
|
// We use the conversion operator to detect the signature of the inner Action.
|
|
template <typename R, typename... Args>
|
|
operator Action<R(Args...)>() const { // NOLINT
|
|
Action<R(typename std::tuple_element<I, std::tuple<Args...>>::type...)>
|
|
converted(action);
|
|
|
|
return [converted](Args... args) -> R {
|
|
return converted.Perform(std::forward_as_tuple(
|
|
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
|
|
};
|
|
}
|
|
};
|
|
|
|
template <typename... Actions>
|
|
struct DoAllAction {
|
|
private:
|
|
template <typename... Args, size_t... I>
|
|
std::vector<Action<void(Args...)>> Convert(IndexSequence<I...>) const {
|
|
return {std::get<I>(actions)...};
|
|
}
|
|
|
|
public:
|
|
std::tuple<Actions...> actions;
|
|
|
|
template <typename R, typename... Args>
|
|
operator Action<R(Args...)>() const { // NOLINT
|
|
struct Op {
|
|
std::vector<Action<void(Args...)>> converted;
|
|
Action<R(Args...)> last;
|
|
R operator()(Args... args) const {
|
|
auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
|
|
for (auto& a : converted) {
|
|
a.Perform(tuple_args);
|
|
}
|
|
return last.Perform(tuple_args);
|
|
}
|
|
};
|
|
return Op{Convert<Args...>(MakeIndexSequence<sizeof...(Actions) - 1>()),
|
|
std::get<sizeof...(Actions) - 1>(actions)};
|
|
}
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// An Unused object can be implicitly constructed from ANY value.
|
|
// This is handy when defining actions that ignore some or all of the
|
|
// mock function arguments. For example, given
|
|
//
|
|
// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
|
|
// MOCK_METHOD3(Bar, double(int index, double x, double y));
|
|
//
|
|
// instead of
|
|
//
|
|
// double DistanceToOriginWithLabel(const string& label, double x, double y) {
|
|
// return sqrt(x*x + y*y);
|
|
// }
|
|
// double DistanceToOriginWithIndex(int index, double x, double y) {
|
|
// return sqrt(x*x + y*y);
|
|
// }
|
|
// ...
|
|
// EXPECT_CALL(mock, Foo("abc", _, _))
|
|
// .WillOnce(Invoke(DistanceToOriginWithLabel));
|
|
// EXPECT_CALL(mock, Bar(5, _, _))
|
|
// .WillOnce(Invoke(DistanceToOriginWithIndex));
|
|
//
|
|
// you could write
|
|
//
|
|
// // We can declare any uninteresting argument as Unused.
|
|
// double DistanceToOrigin(Unused, double x, double y) {
|
|
// return sqrt(x*x + y*y);
|
|
// }
|
|
// ...
|
|
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
|
|
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
|
|
typedef internal::IgnoredValue Unused;
|
|
|
|
// Creates an action that does actions a1, a2, ..., sequentially in
|
|
// each invocation.
|
|
template <typename... Action>
|
|
internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
|
|
Action&&... action) {
|
|
return {std::forward_as_tuple(std::forward<Action>(action)...)};
|
|
}
|
|
|
|
// WithArg<k>(an_action) creates an action that passes the k-th
|
|
// (0-based) argument of the mock function to an_action and performs
|
|
// it. It adapts an action accepting one argument to one that accepts
|
|
// multiple arguments. For convenience, we also provide
|
|
// WithArgs<k>(an_action) (defined below) as a synonym.
|
|
template <size_t k, typename InnerAction>
|
|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
|
|
WithArg(InnerAction&& action) {
|
|
return {std::forward<InnerAction>(action)};
|
|
}
|
|
|
|
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
|
|
// the selected arguments of the mock function to an_action and
|
|
// performs it. It serves as an adaptor between actions with
|
|
// different argument lists.
|
|
template <size_t k, size_t... ks, typename InnerAction>
|
|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
|
|
WithArgs(InnerAction&& action) {
|
|
return {std::forward<InnerAction>(action)};
|
|
}
|
|
|
|
// WithoutArgs(inner_action) can be used in a mock function with a
|
|
// non-empty argument list to perform inner_action, which takes no
|
|
// argument. In other words, it adapts an action accepting no
|
|
// argument to one that accepts (and ignores) arguments.
|
|
template <typename InnerAction>
|
|
internal::WithArgsAction<typename std::decay<InnerAction>::type>
|
|
WithoutArgs(InnerAction&& action) {
|
|
return {std::forward<InnerAction>(action)};
|
|
}
|
|
|
|
// Creates an action that returns 'value'. 'value' is passed by value
|
|
// instead of const reference - otherwise Return("string literal")
|
|
// will trigger a compiler error about using array as initializer.
|
|
template <typename R>
|
|
internal::ReturnAction<R> Return(R value) {
|
|
return internal::ReturnAction<R>(std::move(value));
|
|
}
|
|
|
|
// Creates an action that returns NULL.
|
|
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
|
|
return MakePolymorphicAction(internal::ReturnNullAction());
|
|
}
|
|
|
|
// Creates an action that returns from a void function.
|
|
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
|
|
return MakePolymorphicAction(internal::ReturnVoidAction());
|
|
}
|
|
|
|
// Creates an action that returns the reference to a variable.
|
|
template <typename R>
|
|
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
|
|
return internal::ReturnRefAction<R>(x);
|
|
}
|
|
|
|
// Creates an action that returns the reference to a copy of the
|
|
// argument. The copy is created when the action is constructed and
|
|
// lives as long as the action.
|
|
template <typename R>
|
|
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
|
|
return internal::ReturnRefOfCopyAction<R>(x);
|
|
}
|
|
|
|
// Modifies the parent action (a Return() action) to perform a move of the
|
|
// argument instead of a copy.
|
|
// Return(ByMove()) actions can only be executed once and will assert this
|
|
// invariant.
|
|
template <typename R>
|
|
internal::ByMoveWrapper<R> ByMove(R x) {
|
|
return internal::ByMoveWrapper<R>(std::move(x));
|
|
}
|
|
|
|
// Creates an action that does the default action for the give mock function.
|
|
inline internal::DoDefaultAction DoDefault() {
|
|
return internal::DoDefaultAction();
|
|
}
|
|
|
|
// Creates an action that sets the variable pointed by the N-th
|
|
// (0-based) function argument to 'value'.
|
|
template <size_t N, typename T>
|
|
PolymorphicAction<
|
|
internal::SetArgumentPointeeAction<
|
|
N, T, internal::IsAProtocolMessage<T>::value> >
|
|
SetArgPointee(const T& x) {
|
|
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
|
|
N, T, internal::IsAProtocolMessage<T>::value>(x));
|
|
}
|
|
|
|
template <size_t N>
|
|
PolymorphicAction<
|
|
internal::SetArgumentPointeeAction<N, const char*, false> >
|
|
SetArgPointee(const char* p) {
|
|
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
|
|
N, const char*, false>(p));
|
|
}
|
|
|
|
template <size_t N>
|
|
PolymorphicAction<
|
|
internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
|
|
SetArgPointee(const wchar_t* p) {
|
|
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
|
|
N, const wchar_t*, false>(p));
|
|
}
|
|
|
|
// The following version is DEPRECATED.
|
|
template <size_t N, typename T>
|
|
PolymorphicAction<
|
|
internal::SetArgumentPointeeAction<
|
|
N, T, internal::IsAProtocolMessage<T>::value> >
|
|
SetArgumentPointee(const T& x) {
|
|
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
|
|
N, T, internal::IsAProtocolMessage<T>::value>(x));
|
|
}
|
|
|
|
// Creates an action that sets a pointer referent to a given value.
|
|
template <typename T1, typename T2>
|
|
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
|
|
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
|
|
}
|
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
// Creates an action that sets errno and returns the appropriate error.
|
|
template <typename T>
|
|
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
|
|
SetErrnoAndReturn(int errval, T result) {
|
|
return MakePolymorphicAction(
|
|
internal::SetErrnoAndReturnAction<T>(errval, result));
|
|
}
|
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
// Various overloads for Invoke().
|
|
|
|
// Legacy function.
|
|
// Actions can now be implicitly constructed from callables. No need to create
|
|
// wrapper objects.
|
|
// This function exists for backwards compatibility.
|
|
template <typename FunctionImpl>
|
|
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
|
|
return std::forward<FunctionImpl>(function_impl);
|
|
}
|
|
|
|
// Creates an action that invokes the given method on the given object
|
|
// with the mock function's arguments.
|
|
template <class Class, typename MethodPtr>
|
|
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
|
|
MethodPtr method_ptr) {
|
|
return {obj_ptr, method_ptr};
|
|
}
|
|
|
|
// Creates an action that invokes 'function_impl' with no argument.
|
|
template <typename FunctionImpl>
|
|
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
|
|
InvokeWithoutArgs(FunctionImpl function_impl) {
|
|
return {std::move(function_impl)};
|
|
}
|
|
|
|
// Creates an action that invokes the given method on the given object
|
|
// with no argument.
|
|
template <class Class, typename MethodPtr>
|
|
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
|
|
Class* obj_ptr, MethodPtr method_ptr) {
|
|
return {obj_ptr, method_ptr};
|
|
}
|
|
|
|
// Creates an action that performs an_action and throws away its
|
|
// result. In other words, it changes the return type of an_action to
|
|
// void. an_action MUST NOT return void, or the code won't compile.
|
|
template <typename A>
|
|
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
|
|
return internal::IgnoreResultAction<A>(an_action);
|
|
}
|
|
|
|
// Creates a reference wrapper for the given L-value. If necessary,
|
|
// you can explicitly specify the type of the reference. For example,
|
|
// suppose 'derived' is an object of type Derived, ByRef(derived)
|
|
// would wrap a Derived&. If you want to wrap a const Base& instead,
|
|
// where Base is a base class of Derived, just write:
|
|
//
|
|
// ByRef<const Base>(derived)
|
|
//
|
|
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
|
|
// However, it may still be used for consistency with ByMove().
|
|
template <typename T>
|
|
inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
|
|
return ::std::reference_wrapper<T>(l_value);
|
|
}
|
|
|
|
} // namespace testing
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
|
|
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|