lokinet/llarp/ev/ev_epoll.cpp
Jeff Becker bb47d612b3
more
2019-04-30 12:07:17 -04:00

568 lines
12 KiB
C++

#include <ev/ev_epoll.hpp>
namespace llarp
{
int
tcp_conn::read(byte_t* buf, size_t sz)
{
if(_shouldClose)
return -1;
ssize_t amount = ::read(fd, buf, sz);
if(amount > 0)
{
if(tcp.read)
tcp.read(&tcp, llarp_buffer_t(buf, amount));
}
else if(amount < 0)
{
// error
_shouldClose = true;
errno = 0;
return -1;
}
return 0;
}
void
tcp_conn::flush_write()
{
connected();
ev_io::flush_write();
}
ssize_t
tcp_conn::do_write(void* buf, size_t sz)
{
if(_shouldClose)
return -1;
// pretty much every UNIX system still extant, _including_ solaris
// (on both sides of the fork) can ignore SIGPIPE....except
// the other vendored systems... -rick
return ::send(fd, buf, sz, MSG_NOSIGNAL); // ignore sigpipe
}
void
tcp_conn::connect()
{
socklen_t slen = sizeof(sockaddr_in);
if(_addr.ss_family == AF_UNIX)
slen = sizeof(sockaddr_un);
else if(_addr.ss_family == AF_INET6)
slen = sizeof(sockaddr_in6);
int result = ::connect(fd, (const sockaddr*)&_addr, slen);
if(result == 0)
{
llarp::LogDebug("connected immedidately");
connected();
}
else if(errno == EINPROGRESS)
{
// in progress
llarp::LogDebug("connect in progress");
errno = 0;
return;
}
else if(_conn->error)
{
// wtf?
llarp::LogError("error connecting ", strerror(errno));
_conn->error(_conn);
errno = 0;
}
}
int
tcp_serv::read(byte_t*, size_t)
{
int new_fd = ::accept(fd, nullptr, nullptr);
if(new_fd == -1)
{
llarp::LogError("failed to accept on ", fd, ":", strerror(errno));
return -1;
}
// build handler
llarp::tcp_conn* connimpl = new tcp_conn(loop, new_fd);
if(loop->add_ev(connimpl, true))
{
// call callback
if(tcp->accepted)
tcp->accepted(tcp, &connimpl->tcp);
return 0;
}
// cleanup error
delete connimpl;
return -1;
}
bool
udp_listener::tick()
{
if(udp->tick)
udp->tick(udp);
return true;
}
int
udp_listener::read(byte_t* buf, size_t sz)
{
llarp_buffer_t b;
b.base = buf;
b.cur = b.base;
sockaddr_in6 src;
socklen_t slen = sizeof(sockaddr_in6);
sockaddr* addr = (sockaddr*)&src;
ssize_t ret = ::recvfrom(fd, b.base, sz, 0, addr, &slen);
if(ret < 0)
{
errno = 0;
return -1;
}
if(static_cast< size_t >(ret) > sz)
return -1;
b.sz = ret;
udp->recvfrom(udp, addr, ManagedBuffer{b});
return ret;
}
int
udp_listener::sendto(const sockaddr* to, const void* data, size_t sz)
{
socklen_t slen;
switch(to->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
default:
return -1;
}
ssize_t sent = ::sendto(fd, data, sz, SOCK_NONBLOCK, to, slen);
if(sent == -1)
{
llarp::LogWarn(strerror(errno));
}
return sent;
}
int
tun::sendto(__attribute__((unused)) const sockaddr* to,
__attribute__((unused)) const void* data,
__attribute__((unused)) size_t sz)
{
return -1;
}
bool
tun::tick()
{
if(t->tick)
t->tick(t);
flush_write();
return true;
}
void
tun::flush_write()
{
if(t->before_write)
t->before_write(t);
ev_io::flush_write();
}
int
tun::read(byte_t* buf, size_t sz)
{
ssize_t ret = tuntap_read(tunif, buf, sz);
if(ret > 0 && t->recvpkt)
{
// does not have pktinfo
t->recvpkt(t, llarp_buffer_t(buf, ret));
}
return ret;
}
ssize_t
tun::do_write(void* buf, size_t sz)
{
if(writefd != -1) // case of android
return ::write(writefd, buf, sz);
return ev_io::do_write(buf, sz);
}
int
tun::wait_for_fd_promise(struct device* dev)
{
llarp::tun* t = static_cast< llarp::tun* >(dev->user);
if(t->t->get_fd_promise)
{
struct llarp_fd_promise* promise = t->t->get_fd_promise(t->t);
if(promise)
{
// get promise
auto p = promise->Get();
// set write fd
t->writefd = p.second;
// return read fd
return p.first;
}
}
return -1;
}
bool
tun::setup()
{
// for android / ios
if(t->get_fd_promise)
{
tunif->obtain_fd = &wait_for_fd_promise;
tunif->user = this;
}
llarp::LogDebug("set ifname to ", t->ifname);
strncpy(tunif->if_name, t->ifname, sizeof(tunif->if_name));
if(tuntap_start(tunif, TUNTAP_MODE_TUNNEL, 0) == -1)
{
llarp::LogWarn("failed to start interface");
return false;
}
if(t->get_fd_promise == nullptr)
{
if(tuntap_up(tunif) == -1)
{
llarp::LogWarn("failed to put interface up: ", strerror(errno));
return false;
}
if(tuntap_set_ip(tunif, t->ifaddr, t->ifaddr, t->netmask) == -1)
{
llarp::LogWarn("failed to set ip");
return false;
}
}
fd = tunif->tun_fd;
if(fd == -1)
return false;
// set non blocking
int flags = fcntl(fd, F_GETFL, 0);
if(flags == -1)
return false;
return fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1;
}
}; // namespace llarp
bool
llarp_epoll_loop::tcp_connect(struct llarp_tcp_connecter* tcp,
const sockaddr* remoteaddr)
{
// create socket
int fd = ::socket(remoteaddr->sa_family, SOCK_STREAM, 0);
if(fd == -1)
return false;
// set non blocking
int flags = fcntl(fd, F_GETFL, 0);
if(flags == -1)
{
::close(fd);
return false;
}
if(fcntl(fd, F_SETFL, flags | O_NONBLOCK) == -1)
{
::close(fd);
return false;
}
llarp::tcp_conn* conn = new llarp::tcp_conn(this, fd, remoteaddr, tcp);
add_ev(conn, true);
conn->connect();
return true;
}
llarp::ev_io*
llarp_epoll_loop::bind_tcp(llarp_tcp_acceptor* tcp, const sockaddr* bindaddr)
{
int fd = ::socket(bindaddr->sa_family, SOCK_STREAM, 0);
if(fd == -1)
return nullptr;
socklen_t sz = sizeof(sockaddr_in);
if(bindaddr->sa_family == AF_INET6)
{
sz = sizeof(sockaddr_in6);
}
else if(bindaddr->sa_family == AF_UNIX)
{
sz = sizeof(sockaddr_un);
}
if(::bind(fd, bindaddr, sz) == -1)
{
::close(fd);
return nullptr;
}
if(::listen(fd, 5) == -1)
{
::close(fd);
return nullptr;
}
return new llarp::tcp_serv(this, fd, tcp);
}
bool
llarp_epoll_loop::udp_listen(llarp_udp_io* l, const sockaddr* src)
{
auto ev = create_udp(l, src);
if(ev)
l->fd = ev->fd;
return ev && add_ev(ev, false);
}
bool
llarp_epoll_loop::running() const
{
return epollfd != -1;
}
bool
llarp_epoll_loop::init()
{
if(epollfd == -1)
epollfd = epoll_create(1);
return false;
}
int
llarp_epoll_loop::tick(int ms)
{
epoll_event events[1024];
int result;
result = epoll_wait(epollfd, events, 1024, ms);
bool didRead = false;
bool didWrite = false;
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].data.ptr);
if(ev)
{
llarp::LogDebug(idx, " of ", result, " on ", ev->fd,
" events=", std::to_string(events[idx].events));
if(events[idx].events & EPOLLERR && errno)
{
IO([&]() -> ssize_t {
llarp::LogDebug("epoll error");
ev->error();
return 0;
});
}
else
{
// write THEN READ don't revert me
if(events[idx].events & EPOLLOUT)
{
didWrite = true;
IO([&]() -> ssize_t {
llarp::LogDebug("epoll out");
ev->flush_write();
return 0;
});
}
if(events[idx].events & EPOLLIN)
{
didRead = true;
IO([&]() -> ssize_t {
llarp::LogDebug("epoll in");
return ev->read(readbuf, sizeof(readbuf));
});
}
}
}
++idx;
}
}
if(result != -1)
tick_listeners();
/// if we didn't get an io events we sleep to avoid 100% cpu use
if(didWrite && !didRead)
std::this_thread::sleep_for(std::chrono::milliseconds(5));
return result;
}
int
llarp_epoll_loop::run()
{
epoll_event events[1024];
int result;
do
{
result = epoll_wait(epollfd, events, 1024, EV_TICK_INTERVAL);
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].data.ptr);
if(ev)
{
if(events[idx].events & EPOLLERR)
{
ev->error();
}
else
{
if(events[idx].events & EPOLLIN)
{
ev->read(readbuf, sizeof(readbuf));
}
if(events[idx].events & EPOLLOUT)
{
ev->flush_write();
}
}
}
++idx;
}
}
if(result != -1)
tick_listeners();
} while(epollfd != -1);
return result;
}
int
llarp_epoll_loop::udp_bind(const sockaddr* addr)
{
socklen_t slen;
switch(addr->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
default:
return -1;
}
int fd = socket(addr->sa_family, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("socket()");
return -1;
}
if(addr->sa_family == AF_INET6)
{
// enable dual stack explicitly
int dual = 1;
if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &dual, sizeof(dual)) == -1)
{
// failed
perror("setsockopt()");
close(fd);
return -1;
}
}
llarp::Addr a(*addr);
llarp::LogDebug("bind to ", a);
if(bind(fd, addr, slen) == -1)
{
perror("bind()");
close(fd);
return -1;
}
return fd;
}
bool
llarp_epoll_loop::close_ev(llarp::ev_io* ev)
{
return epoll_ctl(epollfd, EPOLL_CTL_DEL, ev->fd, nullptr) != -1;
}
llarp::ev_io*
llarp_epoll_loop::create_tun(llarp_tun_io* tun)
{
llarp::tun* t = new llarp::tun(tun, shared_from_this());
if(tun->get_fd_promise)
{
}
else if(t->setup())
{
return t;
}
delete t;
return nullptr;
}
llarp::ev_io*
llarp_epoll_loop::create_udp(llarp_udp_io* l, const sockaddr* src)
{
int fd = udp_bind(src);
if(fd == -1)
return nullptr;
llarp::ev_io* listener = new llarp::udp_listener(fd, l);
l->impl = listener;
return listener;
}
bool
llarp_epoll_loop::add_ev(llarp::ev_io* e, bool write)
{
epoll_event ev;
ev.data.ptr = e;
ev.events = EPOLLIN | EPOLLERR;
if(write)
ev.events |= EPOLLOUT;
if(epoll_ctl(epollfd, EPOLL_CTL_ADD, e->fd, &ev) == -1)
{
delete e;
return false;
}
handlers.emplace_back(e);
return true;
}
bool
llarp_epoll_loop::udp_close(llarp_udp_io* l)
{
bool ret = false;
llarp::udp_listener* listener = static_cast< llarp::udp_listener* >(l->impl);
if(listener)
{
close_ev(listener);
// remove handler
auto itr = handlers.begin();
while(itr != handlers.end())
{
if(itr->get() == listener)
itr = handlers.erase(itr);
else
++itr;
}
l->impl = nullptr;
ret = true;
}
return ret;
}
void
llarp_epoll_loop::stop()
{
// close all handlers before closing the epoll fd
auto itr = handlers.begin();
while(itr != handlers.end())
{
close_ev(itr->get());
itr = handlers.erase(itr);
}
if(epollfd != -1)
close(epollfd);
epollfd = -1;
}