lokinet/llarp/ev/ev.cpp

352 lines
8.1 KiB
C++

#include <ev/ev.h>
#include <util/logic.hpp>
#include <util/mem.hpp>
#include <util/string_view.hpp>
#include <stddef.h>
// apparently current Solaris will emulate epoll.
#if __linux__ || __sun__
#include <ev/ev_epoll.hpp>
#elif defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) \
|| (__APPLE__ && __MACH__)
#include <ev/ev_kqueue.hpp>
#elif defined(_WIN32) || defined(_WIN64) || defined(__NT__)
#include <ev/ev_win32.hpp>
#else
#error No async event loop for your platform, subclass llarp_ev_loop
#endif
void
llarp_ev_loop_alloc(struct llarp_ev_loop **ev)
{
#if __linux__ || __sun__
*ev = new llarp_epoll_loop;
#elif defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) \
|| (__APPLE__ && __MACH__)
*ev = new llarp_kqueue_loop;
#elif defined(_WIN32) || defined(_WIN64) || defined(__NT__)
*ev = new llarp_win32_loop;
#else
#error no event loop subclass
#endif
(*ev)->init();
(*ev)->_now = llarp::time_now_ms();
}
void
llarp_ev_loop_free(struct llarp_ev_loop **ev)
{
delete *ev;
*ev = nullptr;
#ifdef _WIN32
exit_tun_loop();
#endif
}
int
llarp_ev_loop_run(struct llarp_ev_loop *ev, llarp::Logic *logic)
{
while(ev->running())
{
ev->_now = llarp::time_now_ms();
ev->tick(EV_TICK_INTERVAL);
if(ev->running())
logic->tick(ev->_now);
}
return 0;
}
int
llarp_fd_promise_wait_for_value(struct llarp_fd_promise *p)
{
return p->Get();
}
void
llarp_ev_loop_run_single_process(struct llarp_ev_loop *ev,
struct llarp_threadpool *tp,
llarp::Logic *logic)
{
while(ev->running())
{
ev->_now = llarp::time_now_ms();
ev->tick(EV_TICK_INTERVAL);
if(ev->running())
{
ev->_now = llarp::time_now_ms();
logic->tick_async(ev->_now);
llarp_threadpool_tick(tp);
}
}
}
int
llarp_ev_add_udp(struct llarp_ev_loop *ev, struct llarp_udp_io *udp,
const struct sockaddr *src)
{
udp->parent = ev;
if(ev->udp_listen(udp, src))
return 0;
return -1;
}
int
llarp_ev_close_udp(struct llarp_udp_io *udp)
{
if(udp->parent->udp_close(udp))
return 0;
return -1;
}
llarp_time_t
llarp_ev_loop_time_now_ms(struct llarp_ev_loop *loop)
{
if(loop)
return loop->_now;
return llarp::time_now_ms();
}
void
llarp_ev_loop_stop(struct llarp_ev_loop *loop)
{
loop->stop();
}
int
llarp_ev_udp_sendto(struct llarp_udp_io *udp, const sockaddr *to,
llarp_buffer_t buf)
{
auto ret =
static_cast< llarp::ev_io * >(udp->impl)->sendto(to, buf.base, buf.sz);
#ifndef _WIN32
if(ret == -1 && errno != 0)
{
#else
if(ret == -1 && WSAGetLastError())
{
#endif
#ifndef _WIN32
llarp::LogWarn("sendto failed ", strerror(errno));
errno = 0;
}
#else
char ebuf[1024];
int err = WSAGetLastError();
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, LANG_NEUTRAL, ebuf,
1024, nullptr);
llarp::LogWarn("sendto failed: ", ebuf);
WSASetLastError(0);
}
#endif
return ret;
}
#ifndef _WIN32
#include <string.h>
bool
llarp_ev_add_tun(struct llarp_ev_loop *loop, struct llarp_tun_io *tun)
{
// llarp::LogInfo("ev creating tunnel ", tun->ifaddr, " on ", tun->ifname);
if(strcmp(tun->ifaddr, "") == 0 || strcmp(tun->ifaddr, "auto") == 0)
{
std::string ifaddr = llarp::findFreePrivateRange();
auto pos = ifaddr.find("/");
if(pos == std::string::npos)
{
llarp::LogWarn("Auto ifaddr didn't return a netmask: ", ifaddr);
return false;
}
int num;
std::string part = ifaddr.substr(pos + 1);
#if defined(ANDROID) || defined(RPI)
num = atoi(part.c_str());
#else
num = std::stoi(part);
#endif
if(num <= 0)
{
llarp::LogError("bad ifaddr netmask value: ", ifaddr);
return false;
}
tun->netmask = num;
const std::string addr = ifaddr.substr(0, pos);
std::copy_n(addr.begin(), std::min(sizeof(tun->ifaddr), addr.size()),
tun->ifaddr);
llarp::LogInfo("IfAddr autodetect: ", tun->ifaddr, "/", tun->netmask);
}
if(strcmp(tun->ifname, "") == 0 || strcmp(tun->ifname, "auto") == 0)
{
std::string ifname = llarp::findFreeLokiTunIfName();
std::copy_n(ifname.begin(), std::min(sizeof(tun->ifname), ifname.size()),
tun->ifname);
llarp::LogInfo("IfName autodetect: ", tun->ifname);
}
llarp::LogDebug("Tun Interface will use the following settings:");
llarp::LogDebug("IfAddr: ", tun->ifaddr);
llarp::LogDebug("IfName: ", tun->ifname);
llarp::LogDebug("IfNMsk: ", tun->netmask);
auto dev = loop->create_tun(tun);
tun->impl = dev;
if(dev)
{
return loop->add_ev(dev, false);
}
llarp::LogWarn("Loop could not create tun");
return false;
}
#else
// OK, now it's time to do it my way.
// we're not even going to use the existing llarp::tun
// we still use the llarp_tun_io struct
// since we still need to branch to the
// packet processing functions
bool
llarp_ev_add_tun(llarp_ev_loop *loop, llarp_tun_io *tun)
{
UNREFERENCED_PARAMETER(loop);
auto dev = new win32_tun_io(tun);
tun->impl = dev;
// We're not even going to add this to the socket event loop
if(dev)
{
dev->setup();
return dev->add_ev(); // start up tun and add to event queue
}
return false;
}
#endif
#ifndef _WIN32
bool
llarp_ev_tun_async_write(struct llarp_tun_io *tun, llarp_buffer_t buf)
{
if(buf.sz > EV_WRITE_BUF_SZ)
{
llarp::LogWarn("packet too big, ", buf.sz, " > ", EV_WRITE_BUF_SZ);
return false;
}
return static_cast< llarp::tun * >(tun->impl)->queue_write(buf.base, buf.sz);
}
#else
bool
llarp_ev_tun_async_write(struct llarp_tun_io *tun, llarp_buffer_t buf)
{
if(buf.sz > EV_WRITE_BUF_SZ)
{
llarp::LogWarn("packet too big, ", buf.sz, " > ", EV_WRITE_BUF_SZ);
return false;
}
return static_cast< win32_tun_io * >(tun->impl)->queue_write(buf.base,
buf.sz);
}
#endif
bool
llarp_tcp_conn_async_write(struct llarp_tcp_conn *conn, llarp_buffer_t buf)
{
llarp::tcp_conn *impl = static_cast< llarp::tcp_conn * >(conn->impl);
if(impl->_shouldClose)
{
llarp::LogError("write on closed connection");
return false;
}
size_t sz = buf.sz;
buf.cur = buf.base;
while(sz > EV_WRITE_BUF_SZ)
{
if(!impl->queue_write(buf.cur, EV_WRITE_BUF_SZ))
return false;
buf.cur += EV_WRITE_BUF_SZ;
sz -= EV_WRITE_BUF_SZ;
}
return impl->queue_write(buf.cur, sz);
}
void
llarp_tcp_async_try_connect(struct llarp_ev_loop *loop,
struct llarp_tcp_connecter *tcp)
{
tcp->loop = loop;
llarp::string_view addr_str, port_str;
// try parsing address
const char *begin = tcp->remote;
const char *ptr = strstr(tcp->remote, ":");
// get end of address
if(ptr == nullptr)
{
llarp::LogError("bad address: ", tcp->remote);
if(tcp->error)
tcp->error(tcp);
return;
}
const char *end = ptr;
while(*end && ((end - begin) < static_cast< ptrdiff_t >(sizeof tcp->remote)))
{
++end;
}
addr_str = llarp::string_view(begin, ptr - begin);
++ptr;
port_str = llarp::string_view(ptr, end - ptr);
// actually parse address
llarp::Addr addr(addr_str, port_str);
if(!loop->tcp_connect(tcp, addr))
{
llarp::LogError("async connect failed");
if(tcp->error)
tcp->error(tcp);
}
}
bool
llarp_tcp_serve(struct llarp_ev_loop *loop, struct llarp_tcp_acceptor *tcp,
const struct sockaddr *bindaddr)
{
tcp->loop = loop;
llarp::ev_io *impl = loop->bind_tcp(tcp, bindaddr);
if(impl)
{
return loop->add_ev(impl, false);
}
return false;
}
void
llarp_tcp_acceptor_close(struct llarp_tcp_acceptor *tcp)
{
llarp::ev_io *impl = static_cast< llarp::ev_io * >(tcp->user);
tcp->impl = nullptr;
tcp->loop->close_ev(impl);
if(tcp->closed)
tcp->closed(tcp);
// dont free acceptor because it may be stack allocated
}
void
llarp_tcp_conn_close(struct llarp_tcp_conn *conn)
{
static_cast< llarp::tcp_conn * >(conn->impl)->_shouldClose = true;
}
namespace llarp
{
bool
tcp_conn::tick()
{
if(_shouldClose)
{
if(tcp.closed)
tcp.closed(&tcp);
return false;
}
else if(tcp.tick)
tcp.tick(&tcp);
return true;
}
} // namespace llarp