mirror of
https://github.com/oxen-io/lokinet.git
synced 2024-11-09 13:10:25 +00:00
491 lines
18 KiB
C++
491 lines
18 KiB
C++
// Copyright 2018 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// File: node_hash_set.h
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// An `absl::node_hash_set<T>` is an unordered associative container designed to
|
|
// be a more efficient replacement for `std::unordered_set`. Like
|
|
// `unordered_set`, search, insertion, and deletion of map elements can be done
|
|
// as an `O(1)` operation. However, `node_hash_set` (and other unordered
|
|
// associative containers known as the collection of Abseil "Swiss tables")
|
|
// contain other optimizations that result in both memory and computation
|
|
// advantages.
|
|
//
|
|
// In most cases, your default choice for a hash table should be a map of type
|
|
// `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
|
|
// pointer stability, a `node_hash_set` should be your preferred choice. As
|
|
// well, if you are migrating your code from using `std::unordered_set`, a
|
|
// `node_hash_set` should be an easy migration. Consider migrating to
|
|
// `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
|
|
// upon further review.
|
|
|
|
#ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
|
|
#define ABSL_CONTAINER_NODE_HASH_SET_H_
|
|
|
|
#include <type_traits>
|
|
|
|
#include "absl/algorithm/container.h"
|
|
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
|
|
#include "absl/container/internal/node_hash_policy.h"
|
|
#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
|
|
#include "absl/memory/memory.h"
|
|
|
|
namespace absl {
|
|
inline namespace lts_2018_12_18 {
|
|
namespace container_internal {
|
|
template <typename T>
|
|
struct NodeHashSetPolicy;
|
|
} // namespace container_internal
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// absl::node_hash_set
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// An `absl::node_hash_set<T>` is an unordered associative container which
|
|
// has been optimized for both speed and memory footprint in most common use
|
|
// cases. Its interface is similar to that of `std::unordered_set<T>` with the
|
|
// following notable differences:
|
|
//
|
|
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
|
|
// `insert()`, provided that the map is provided a compatible heterogeneous
|
|
// hashing function and equality operator.
|
|
// * Contains a `capacity()` member function indicating the number of element
|
|
// slots (open, deleted, and empty) within the hash set.
|
|
// * Returns `void` from the `erase(iterator)` overload.
|
|
//
|
|
// By default, `node_hash_set` uses the `absl::Hash` hashing framework.
|
|
// All fundamental and Abseil types that support the `absl::Hash` framework have
|
|
// a compatible equality operator for comparing insertions into `node_hash_set`.
|
|
// If your type is not yet supported by the `absl::Hash` framework, see
|
|
// absl/hash/hash.h for information on extending Abseil hashing to user-defined
|
|
// types.
|
|
//
|
|
// Example:
|
|
//
|
|
// // Create a node hash set of three strings
|
|
// absl::node_hash_map<std::string, std::string> ducks =
|
|
// {"huey", "dewey"}, "louie"};
|
|
//
|
|
// // Insert a new element into the node hash map
|
|
// ducks.insert("donald"};
|
|
//
|
|
// // Force a rehash of the node hash map
|
|
// ducks.rehash(0);
|
|
//
|
|
// // See if "dewey" is present
|
|
// if (ducks.contains("dewey")) {
|
|
// std::cout << "We found dewey!" << std::endl;
|
|
// }
|
|
template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
|
|
class Eq = absl::container_internal::hash_default_eq<T>,
|
|
class Alloc = std::allocator<T>>
|
|
class node_hash_set
|
|
: public absl::container_internal::raw_hash_set<
|
|
absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
|
|
using Base = typename node_hash_set::raw_hash_set;
|
|
|
|
public:
|
|
// Constructors and Assignment Operators
|
|
//
|
|
// A node_hash_set supports the same overload set as `std::unordered_map`
|
|
// for construction and assignment:
|
|
//
|
|
// * Default constructor
|
|
//
|
|
// // No allocation for the table's elements is made.
|
|
// absl::node_hash_set<std::string> set1;
|
|
//
|
|
// * Initializer List constructor
|
|
//
|
|
// absl::node_hash_set<std::string> set2 =
|
|
// {{"huey"}, {"dewey"}, {"louie"},};
|
|
//
|
|
// * Copy constructor
|
|
//
|
|
// absl::node_hash_set<std::string> set3(set2);
|
|
//
|
|
// * Copy assignment operator
|
|
//
|
|
// // Hash functor and Comparator are copied as well
|
|
// absl::node_hash_set<std::string> set4;
|
|
// set4 = set3;
|
|
//
|
|
// * Move constructor
|
|
//
|
|
// // Move is guaranteed efficient
|
|
// absl::node_hash_set<std::string> set5(std::move(set4));
|
|
//
|
|
// * Move assignment operator
|
|
//
|
|
// // May be efficient if allocators are compatible
|
|
// absl::node_hash_set<std::string> set6;
|
|
// set6 = std::move(set5);
|
|
//
|
|
// * Range constructor
|
|
//
|
|
// std::vector<std::string> v = {"a", "b"};
|
|
// absl::node_hash_set<std::string> set7(v.begin(), v.end());
|
|
node_hash_set() {}
|
|
using Base::Base;
|
|
|
|
// node_hash_set::begin()
|
|
//
|
|
// Returns an iterator to the beginning of the `node_hash_set`.
|
|
using Base::begin;
|
|
|
|
// node_hash_set::cbegin()
|
|
//
|
|
// Returns a const iterator to the beginning of the `node_hash_set`.
|
|
using Base::cbegin;
|
|
|
|
// node_hash_set::cend()
|
|
//
|
|
// Returns a const iterator to the end of the `node_hash_set`.
|
|
using Base::cend;
|
|
|
|
// node_hash_set::end()
|
|
//
|
|
// Returns an iterator to the end of the `node_hash_set`.
|
|
using Base::end;
|
|
|
|
// node_hash_set::capacity()
|
|
//
|
|
// Returns the number of element slots (assigned, deleted, and empty)
|
|
// available within the `node_hash_set`.
|
|
//
|
|
// NOTE: this member function is particular to `absl::node_hash_set` and is
|
|
// not provided in the `std::unordered_map` API.
|
|
using Base::capacity;
|
|
|
|
// node_hash_set::empty()
|
|
//
|
|
// Returns whether or not the `node_hash_set` is empty.
|
|
using Base::empty;
|
|
|
|
// node_hash_set::max_size()
|
|
//
|
|
// Returns the largest theoretical possible number of elements within a
|
|
// `node_hash_set` under current memory constraints. This value can be thought
|
|
// of the largest value of `std::distance(begin(), end())` for a
|
|
// `node_hash_set<T>`.
|
|
using Base::max_size;
|
|
|
|
// node_hash_set::size()
|
|
//
|
|
// Returns the number of elements currently within the `node_hash_set`.
|
|
using Base::size;
|
|
|
|
// node_hash_set::clear()
|
|
//
|
|
// Removes all elements from the `node_hash_set`. Invalidates any references,
|
|
// pointers, or iterators referring to contained elements.
|
|
//
|
|
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking
|
|
// the underlying buffer call `erase(begin(), end())`.
|
|
using Base::clear;
|
|
|
|
// node_hash_set::erase()
|
|
//
|
|
// Erases elements within the `node_hash_set`. Erasing does not trigger a
|
|
// rehash. Overloads are listed below.
|
|
//
|
|
// void erase(const_iterator pos):
|
|
//
|
|
// Erases the element at `position` of the `node_hash_set`, returning
|
|
// `void`.
|
|
//
|
|
// NOTE: this return behavior is different than that of STL containers in
|
|
// general and `std::unordered_map` in particular.
|
|
//
|
|
// iterator erase(const_iterator first, const_iterator last):
|
|
//
|
|
// Erases the elements in the open interval [`first`, `last`), returning an
|
|
// iterator pointing to `last`.
|
|
//
|
|
// size_type erase(const key_type& key):
|
|
//
|
|
// Erases the element with the matching key, if it exists.
|
|
using Base::erase;
|
|
|
|
// node_hash_set::insert()
|
|
//
|
|
// Inserts an element of the specified value into the `node_hash_set`,
|
|
// returning an iterator pointing to the newly inserted element, provided that
|
|
// an element with the given key does not already exist. If rehashing occurs
|
|
// due to the insertion, all iterators are invalidated. Overloads are listed
|
|
// below.
|
|
//
|
|
// std::pair<iterator,bool> insert(const T& value):
|
|
//
|
|
// Inserts a value into the `node_hash_set`. Returns a pair consisting of an
|
|
// iterator to the inserted element (or to the element that prevented the
|
|
// insertion) and a bool denoting whether the insertion took place.
|
|
//
|
|
// std::pair<iterator,bool> insert(T&& value):
|
|
//
|
|
// Inserts a moveable value into the `node_hash_set`. Returns a pair
|
|
// consisting of an iterator to the inserted element (or to the element that
|
|
// prevented the insertion) and a bool denoting whether the insertion took
|
|
// place.
|
|
//
|
|
// iterator insert(const_iterator hint, const T& value):
|
|
// iterator insert(const_iterator hint, T&& value):
|
|
//
|
|
// Inserts a value, using the position of `hint` as a non-binding suggestion
|
|
// for where to begin the insertion search. Returns an iterator to the
|
|
// inserted element, or to the existing element that prevented the
|
|
// insertion.
|
|
//
|
|
// void insert(InputIterator first, InputIterator last):
|
|
//
|
|
// Inserts a range of values [`first`, `last`).
|
|
//
|
|
// NOTE: Although the STL does not specify which element may be inserted if
|
|
// multiple keys compare equivalently, for `node_hash_set` we guarantee the
|
|
// first match is inserted.
|
|
//
|
|
// void insert(std::initializer_list<T> ilist):
|
|
//
|
|
// Inserts the elements within the initializer list `ilist`.
|
|
//
|
|
// NOTE: Although the STL does not specify which element may be inserted if
|
|
// multiple keys compare equivalently within the initializer list, for
|
|
// `node_hash_set` we guarantee the first match is inserted.
|
|
using Base::insert;
|
|
|
|
// node_hash_set::emplace()
|
|
//
|
|
// Inserts an element of the specified value by constructing it in-place
|
|
// within the `node_hash_set`, provided that no element with the given key
|
|
// already exists.
|
|
//
|
|
// The element may be constructed even if there already is an element with the
|
|
// key in the container, in which case the newly constructed element will be
|
|
// destroyed immediately.
|
|
//
|
|
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
|
using Base::emplace;
|
|
|
|
// node_hash_set::emplace_hint()
|
|
//
|
|
// Inserts an element of the specified value by constructing it in-place
|
|
// within the `node_hash_set`, using the position of `hint` as a non-binding
|
|
// suggestion for where to begin the insertion search, and only inserts
|
|
// provided that no element with the given key already exists.
|
|
//
|
|
// The element may be constructed even if there already is an element with the
|
|
// key in the container, in which case the newly constructed element will be
|
|
// destroyed immediately.
|
|
//
|
|
// If rehashing occurs due to the insertion, all iterators are invalidated.
|
|
using Base::emplace_hint;
|
|
|
|
// node_hash_set::extract()
|
|
//
|
|
// Extracts the indicated element, erasing it in the process, and returns it
|
|
// as a C++17-compatible node handle. Overloads are listed below.
|
|
//
|
|
// node_type extract(const_iterator position):
|
|
//
|
|
// Extracts the element at the indicated position and returns a node handle
|
|
// owning that extracted data.
|
|
//
|
|
// node_type extract(const key_type& x):
|
|
//
|
|
// Extracts the element with the key matching the passed key value and
|
|
// returns a node handle owning that extracted data. If the `node_hash_set`
|
|
// does not contain an element with a matching key, this function returns an
|
|
// empty node handle.
|
|
using Base::extract;
|
|
|
|
// node_hash_set::merge()
|
|
//
|
|
// Extracts elements from a given `source` flat hash map into this
|
|
// `node_hash_set`. If the destination `node_hash_set` already contains an
|
|
// element with an equivalent key, that element is not extracted.
|
|
using Base::merge;
|
|
|
|
// node_hash_set::swap(node_hash_set& other)
|
|
//
|
|
// Exchanges the contents of this `node_hash_set` with those of the `other`
|
|
// flat hash map, avoiding invocation of any move, copy, or swap operations on
|
|
// individual elements.
|
|
//
|
|
// All iterators and references on the `node_hash_set` remain valid, excepting
|
|
// for the past-the-end iterator, which is invalidated.
|
|
//
|
|
// `swap()` requires that the flat hash set's hashing and key equivalence
|
|
// functions be Swappable, and are exchaged using unqualified calls to
|
|
// non-member `swap()`. If the map's allocator has
|
|
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
|
|
// set to `true`, the allocators are also exchanged using an unqualified call
|
|
// to non-member `swap()`; otherwise, the allocators are not swapped.
|
|
using Base::swap;
|
|
|
|
// node_hash_set::rehash(count)
|
|
//
|
|
// Rehashes the `node_hash_set`, setting the number of slots to be at least
|
|
// the passed value. If the new number of slots increases the load factor more
|
|
// than the current maximum load factor
|
|
// (`count` < `size()` / `max_load_factor()`), then the new number of slots
|
|
// will be at least `size()` / `max_load_factor()`.
|
|
//
|
|
// To force a rehash, pass rehash(0).
|
|
//
|
|
// NOTE: unlike behavior in `std::unordered_set`, references are also
|
|
// invalidated upon a `rehash()`.
|
|
using Base::rehash;
|
|
|
|
// node_hash_set::reserve(count)
|
|
//
|
|
// Sets the number of slots in the `node_hash_set` to the number needed to
|
|
// accommodate at least `count` total elements without exceeding the current
|
|
// maximum load factor, and may rehash the container if needed.
|
|
using Base::reserve;
|
|
|
|
// node_hash_set::contains()
|
|
//
|
|
// Determines whether an element comparing equal to the given `key` exists
|
|
// within the `node_hash_set`, returning `true` if so or `false` otherwise.
|
|
using Base::contains;
|
|
|
|
// node_hash_set::count(const Key& key) const
|
|
//
|
|
// Returns the number of elements comparing equal to the given `key` within
|
|
// the `node_hash_set`. note that this function will return either `1` or `0`
|
|
// since duplicate elements are not allowed within a `node_hash_set`.
|
|
using Base::count;
|
|
|
|
// node_hash_set::equal_range()
|
|
//
|
|
// Returns a closed range [first, last], defined by a `std::pair` of two
|
|
// iterators, containing all elements with the passed key in the
|
|
// `node_hash_set`.
|
|
using Base::equal_range;
|
|
|
|
// node_hash_set::find()
|
|
//
|
|
// Finds an element with the passed `key` within the `node_hash_set`.
|
|
using Base::find;
|
|
|
|
// node_hash_set::bucket_count()
|
|
//
|
|
// Returns the number of "buckets" within the `node_hash_set`. Note that
|
|
// because a flat hash map contains all elements within its internal storage,
|
|
// this value simply equals the current capacity of the `node_hash_set`.
|
|
using Base::bucket_count;
|
|
|
|
// node_hash_set::load_factor()
|
|
//
|
|
// Returns the current load factor of the `node_hash_set` (the average number
|
|
// of slots occupied with a value within the hash map).
|
|
using Base::load_factor;
|
|
|
|
// node_hash_set::max_load_factor()
|
|
//
|
|
// Manages the maximum load factor of the `node_hash_set`. Overloads are
|
|
// listed below.
|
|
//
|
|
// float node_hash_set::max_load_factor()
|
|
//
|
|
// Returns the current maximum load factor of the `node_hash_set`.
|
|
//
|
|
// void node_hash_set::max_load_factor(float ml)
|
|
//
|
|
// Sets the maximum load factor of the `node_hash_set` to the passed value.
|
|
//
|
|
// NOTE: This overload is provided only for API compatibility with the STL;
|
|
// `node_hash_set` will ignore any set load factor and manage its rehashing
|
|
// internally as an implementation detail.
|
|
using Base::max_load_factor;
|
|
|
|
// node_hash_set::get_allocator()
|
|
//
|
|
// Returns the allocator function associated with this `node_hash_set`.
|
|
using Base::get_allocator;
|
|
|
|
// node_hash_set::hash_function()
|
|
//
|
|
// Returns the hashing function used to hash the keys within this
|
|
// `node_hash_set`.
|
|
using Base::hash_function;
|
|
|
|
// node_hash_set::key_eq()
|
|
//
|
|
// Returns the function used for comparing keys equality.
|
|
using Base::key_eq;
|
|
|
|
ABSL_DEPRECATED("Call `hash_function()` instead.")
|
|
typename Base::hasher hash_funct() { return this->hash_function(); }
|
|
|
|
ABSL_DEPRECATED("Call `rehash()` instead.")
|
|
void resize(typename Base::size_type hint) { this->rehash(hint); }
|
|
};
|
|
|
|
namespace container_internal {
|
|
|
|
template <class T>
|
|
struct NodeHashSetPolicy
|
|
: absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
|
|
using key_type = T;
|
|
using init_type = T;
|
|
using constant_iterators = std::true_type;
|
|
|
|
template <class Allocator, class... Args>
|
|
static T* new_element(Allocator* alloc, Args&&... args) {
|
|
using ValueAlloc =
|
|
typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
|
|
ValueAlloc value_alloc(*alloc);
|
|
T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
|
|
absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
|
|
std::forward<Args>(args)...);
|
|
return res;
|
|
}
|
|
|
|
template <class Allocator>
|
|
static void delete_element(Allocator* alloc, T* elem) {
|
|
using ValueAlloc =
|
|
typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
|
|
ValueAlloc value_alloc(*alloc);
|
|
absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
|
|
absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
|
|
}
|
|
|
|
template <class F, class... Args>
|
|
static decltype(absl::container_internal::DecomposeValue(
|
|
std::declval<F>(), std::declval<Args>()...))
|
|
apply(F&& f, Args&&... args) {
|
|
return absl::container_internal::DecomposeValue(
|
|
std::forward<F>(f), std::forward<Args>(args)...);
|
|
}
|
|
|
|
static size_t element_space_used(const T*) { return sizeof(T); }
|
|
};
|
|
} // namespace container_internal
|
|
|
|
namespace container_algorithm_internal {
|
|
|
|
// Specialization of trait in absl/algorithm/container.h
|
|
template <class Key, class Hash, class KeyEqual, class Allocator>
|
|
struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
|
|
: std::true_type {};
|
|
|
|
} // namespace container_algorithm_internal
|
|
} // inline namespace lts_2018_12_18
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_CONTAINER_NODE_HASH_SET_H_
|