lokinet/llarp/ev/ev_kqueue.cpp
2019-04-03 10:42:45 -04:00

588 lines
12 KiB
C++

#include <ev/ev_kqueue.hpp>
namespace llarp
{
inline int
tcp_conn::read(byte_t* buf, size_t sz)
{
if(sz == 0)
{
if(tcp.read)
tcp.read(&tcp, {nullptr, nullptr, 0});
return 0;
}
if(_shouldClose)
return -1;
ssize_t amount = ::read(fd, buf, sz);
if(amount >= 0)
{
if(tcp.read)
tcp.read(&tcp, llarp_buffer_t(buf, amount));
}
else
{
if(errno == EAGAIN || errno == EWOULDBLOCK)
return amount;
_shouldClose = true;
return -1;
}
return amount;
}
inline void
tcp_conn::flush_write()
{
connected();
ev_io::flush_write();
}
inline ssize_t
tcp_conn::do_write(void* buf, size_t sz)
{
if(_shouldClose)
return -1;
#if defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__)
// macintosh uses a weird sockopt
return ::send(fd, buf, sz, MSG_NOSIGNAL); // ignore sigpipe
#else
return ::send(fd, buf, sz, 0);
#endif
}
inline void
tcp_conn::connect()
{
socklen_t slen = sizeof(sockaddr_in);
if(_addr.ss_family == AF_UNIX)
slen = sizeof(sockaddr_un);
else if(_addr.ss_family == AF_INET6)
slen = sizeof(sockaddr_in6);
int result = ::connect(fd, (const sockaddr*)&_addr, slen);
if(result == 0)
{
llarp::LogDebug("Connected");
connected();
}
else if(errno == EINPROGRESS)
{
llarp::LogDebug("connect in progress");
errno = 0;
return;
}
else if(_conn)
{
_conn->error(_conn);
}
}
inline int
tcp_serv::read(byte_t*, size_t)
{
int new_fd = ::accept(fd, nullptr, nullptr);
if(new_fd == -1)
{
llarp::LogError("failed to accept on ", fd, ": ", strerror(errno));
return -1;
}
// get flags
int flags = fcntl(new_fd, F_GETFL, 0);
if(flags == -1)
{
::close(new_fd);
return -1;
}
// set flags
if(fcntl(new_fd, F_SETFL, flags | O_NONBLOCK) == -1)
{
llarp::LogError("Failed to set non block on ", fd, ": ", strerror(errno));
::close(new_fd);
return -1;
}
// build handler
llarp::tcp_conn* connimpl = new llarp::tcp_conn(loop, new_fd);
if(loop->add_ev(connimpl, true))
{
// call callback
if(tcp->accepted)
tcp->accepted(tcp, &connimpl->tcp);
return 0;
}
// cleanup error
delete connimpl;
return -1;
}
bool
udp_listener::tick()
{
if(udp->tick)
udp->tick(udp);
return true;
}
int
udp_listener::read(byte_t* buf, size_t sz)
{
sockaddr_in6 src;
socklen_t slen = sizeof(sockaddr_in6);
sockaddr* addr = (sockaddr*)&src;
ssize_t ret = ::recvfrom(fd, buf, sz, 0, addr, &slen);
if(ret < 0)
{
llarp::LogWarn("recvfrom failed");
return -1;
}
if(static_cast< size_t >(ret) > sz)
{
llarp::LogWarn("ret > sz");
return -1;
}
if(!addr)
{
llarp::LogWarn("no source addr");
}
// Addr is the source
udp->recvfrom(udp, addr, ManagedBuffer{llarp_buffer_t(buf, ret)});
return 0;
}
int
udp_listener::sendto(const sockaddr* to, const void* data, size_t sz)
{
socklen_t slen;
switch(to->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
default:
return -1;
}
if(!fd)
{
printf("kqueue sendto fd empty\n");
return -1;
}
ssize_t sent = ::sendto(fd, data, sz, 0, to, slen);
if(sent == -1 || errno)
{
llarp::LogError("failed to send udp: ", strerror(errno));
errno = 0;
}
return sent;
}
int
tun::sendto(__attribute__((unused)) const sockaddr* to,
__attribute__((unused)) const void* data,
__attribute__((unused)) size_t sz)
{
return -1;
}
#ifdef __APPLE__
ssize_t
tun::do_write(void* buf, size_t sz)
{
iovec vecs[2];
// TODO: IPV6
uint32_t t = htonl(AF_INET);
vecs[0].iov_base = &t;
vecs[0].iov_len = sizeof(t);
vecs[1].iov_base = buf;
vecs[1].iov_len = sz;
return writev(fd, vecs, 2);
}
#endif
void
tun::before_flush_write()
{
if(t->before_write)
{
t->before_write(t);
}
}
bool
tun::tick()
{
if(t->tick)
t->tick(t);
flush_write();
return true;
}
int
tun::read(byte_t* buf, size_t)
{
// all BSDs have packet info except freebsd
#ifdef __FreeBSD__
const ssize_t offset = 0;
#else
const ssize_t offset = 4;
#endif
ssize_t ret = ::read(fd, buf, 1500);
if(ret > offset && t->recvpkt)
{
buf += offset;
ret -= offset;
llarp_buffer_t pkt(buf, ret);
t->recvpkt(t, pkt);
}
return ret;
}
bool
tun::setup()
{
llarp::LogDebug("set up tunif");
if(tuntap_start(tunif, TUNTAP_MODE_TUNNEL, TUNTAP_ID_ANY) == -1)
return false;
if(tuntap_up(tunif) == -1)
return false;
if(tuntap_set_ifname(tunif, t->ifname) == -1)
return false;
llarp::LogInfo("set ", tunif->if_name, " to use address ", t->ifaddr);
if(tuntap_set_ip(tunif, t->ifaddr, t->ifaddr, t->netmask) == -1)
return false;
fd = tunif->tun_fd;
return fd != -1;
}
}; // namespace llarp
llarp::ev_io*
llarp_kqueue_loop::bind_tcp(llarp_tcp_acceptor* tcp, const sockaddr* bindaddr)
{
int fd = ::socket(bindaddr->sa_family, SOCK_STREAM, 0);
if(fd == -1)
return nullptr;
socklen_t sz = sizeof(sockaddr_in);
if(bindaddr->sa_family == AF_INET6)
{
sz = sizeof(sockaddr_in6);
}
else if(bindaddr->sa_family == AF_UNIX)
{
sz = sizeof(sockaddr_un);
}
if(::bind(fd, bindaddr, sz) == -1)
{
::close(fd);
return nullptr;
}
if(::listen(fd, 5) == -1)
{
::close(fd);
return nullptr;
}
// set non blocking
int flags = fcntl(fd, F_GETFL, 0);
if(flags == -1)
{
::close(fd);
return nullptr;
}
if(fcntl(fd, F_SETFL, flags | O_NONBLOCK) == -1)
{
::close(fd);
return nullptr;
}
llarp::ev_io* serv = new llarp::tcp_serv(this, fd, tcp);
tcp->impl = serv;
return serv;
}
llarp::ev_io*
llarp_kqueue_loop::create_tun(llarp_tun_io* tun)
{
llarp::tun* t = new llarp::tun(tun, this);
if(t->setup())
return t;
delete t;
return nullptr;
}
bool
llarp_kqueue_loop::init()
{
if(kqueuefd == -1)
{
kqueuefd = kqueue();
}
return kqueuefd != -1;
}
bool
llarp_kqueue_loop::running() const
{
return kqueuefd != -1;
}
bool
llarp_kqueue_loop::tcp_connect(llarp_tcp_connecter* tcp, const sockaddr* addr)
{
int fd = ::socket(addr->sa_family, SOCK_STREAM, 0);
if(fd == -1)
return false;
int flags = fcntl(fd, F_GETFL, 0);
if(flags == -1)
{
::close(fd);
return false;
}
if(fcntl(fd, F_SETFL, flags | O_NONBLOCK) == -1)
{
::close(fd);
return false;
}
llarp::tcp_conn* conn = new llarp::tcp_conn(this, fd, addr, tcp);
add_ev(conn, true);
conn->connect();
return true;
}
int
llarp_kqueue_loop::tick(int ms)
{
std::array< struct kevent, 1024 > events;
int result;
timespec t;
t.tv_sec = 0;
t.tv_nsec = ms * 1000000UL;
result = kevent(kqueuefd, nullptr, 0, events.data(), events.size(), &t);
// result: 0 is a timeout
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].udata);
if(ev)
{
if(events[idx].filter & EVFILT_WRITE)
{
IO([&]() -> ssize_t {
ev->flush_write_buffers(events[idx].data);
return 0;
});
}
if(events[idx].filter & EVFILT_READ)
{
IO([&]() -> ssize_t {
return ev->read(readbuf,
std::min(sizeof(readbuf), size_t(events[idx].data)));
});
}
}
++idx;
}
}
if(result != -1)
tick_listeners();
return result;
}
int
llarp_kqueue_loop::run()
{
timespec t;
t.tv_sec = 0;
t.tv_nsec = 1000000UL * EV_TICK_INTERVAL;
struct kevent events[1024];
int result;
do
{
result = kevent(kqueuefd, nullptr, 0, events, 1024, &t);
// result: 0 is a timeout
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].udata);
if(ev)
{
if(events[idx].filter & EVFILT_READ)
ev->read(readbuf,
std::min(sizeof(readbuf), size_t(events[idx].data)));
if(events[idx].filter & EVFILT_WRITE)
ev->flush_write_buffers(events[idx].data);
}
else
{
llarp::LogWarn("kqueue event ", idx, " udata wasnt an ev_io");
}
++idx;
}
}
if(result != -1)
tick_listeners();
} while(result != -1);
return result;
}
int
llarp_kqueue_loop::udp_bind(const sockaddr* addr)
{
socklen_t slen;
llarp::LogDebug("kqueue bind affam", addr->sa_family);
switch(addr->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
#ifdef AF_LINK
#endif
#ifdef AF_PACKET
case AF_PACKET:
slen = sizeof(struct sockaddr_ll);
break;
#endif
default:
llarp::LogError("unsupported address family");
return -1;
}
int fd = socket(addr->sa_family, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("socket()");
return -1;
}
if(addr->sa_family == AF_INET6)
{
// enable dual stack explicitly
int dual = 1;
if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &dual, sizeof(dual)) == -1)
{
// failed
perror("setsockopt()");
close(fd);
return -1;
}
}
llarp::Addr a(*addr);
llarp::LogDebug("bind to ", a);
// FreeBSD handbook said to do this
if(addr->sa_family == AF_INET && INADDR_ANY)
a._addr4.sin_addr.s_addr = htonl(INADDR_ANY);
if(bind(fd, addr, slen) == -1)
{
perror("bind()");
close(fd);
return -1;
}
return fd;
}
bool
llarp_kqueue_loop::udp_listen(llarp_udp_io* l, const sockaddr* src)
{
auto ev = create_udp(l, src);
if(ev)
l->fd = ev->fd;
return ev && add_ev(ev, false);
}
bool
llarp_kqueue_loop::close_ev(llarp::ev_io* ev)
{
EV_SET(&ev->change, ev->fd, ev->flags, EV_DELETE, 0, 0, nullptr);
return kevent(kqueuefd, &ev->change, 1, nullptr, 0, nullptr) != -1;
}
llarp::ev_io*
llarp_kqueue_loop::create_udp(llarp_udp_io* l, const sockaddr* src)
{
int fd = udp_bind(src);
if(fd == -1)
return nullptr;
llarp::udp_listener* listener = new llarp::udp_listener(fd, l);
l->impl = listener;
return listener;
}
bool
llarp_kqueue_loop::add_ev(llarp::ev_io* ev, bool w)
{
ev->flags = EVFILT_READ;
EV_SET(&ev->change, ev->fd, EVFILT_READ, EV_ADD, 0, 0, ev);
if(kevent(kqueuefd, &ev->change, 1, nullptr, 0, nullptr) == -1)
{
llarp::LogError("Failed to add event: ", strerror(errno));
delete ev;
return false;
}
if(w)
{
ev->flags |= EVFILT_WRITE;
EV_SET(&ev->change, ev->fd, EVFILT_WRITE, EV_ADD, 0, 0, ev);
if(kevent(kqueuefd, &ev->change, 1, nullptr, 0, nullptr) == -1)
{
llarp::LogError("Failed to add event: ", strerror(errno));
delete ev;
return false;
}
}
handlers.emplace_back(ev);
return true;
}
bool
llarp_kqueue_loop::udp_close(llarp_udp_io* l)
{
bool ret = false;
auto listener = static_cast< llarp::udp_listener* >(l->impl);
if(listener)
{
// printf("Calling close_ev for [%x] fd[%d]\n", listener, listener->fd);
ret = close_ev(listener);
// remove handler
auto itr = handlers.begin();
while(itr != handlers.end())
{
if(itr->get() == listener)
{
itr = handlers.erase(itr);
ret = true;
}
else
++itr;
}
l->impl = nullptr;
}
return ret;
}
void
llarp_kqueue_loop::stop()
{
auto itr = handlers.begin();
while(itr != handlers.end())
{
close_ev(itr->get());
itr = handlers.erase(itr);
}
if(kqueuefd != -1)
::close(kqueuefd);
kqueuefd = -1;
}