lokinet/llarp/crypto/types.hpp
Jason Rhinelander 8cd95c01b3 Abstract signing hash data location
This makes the interface a little cleaner by not requiring the class
user to know how we laid out the data in the object.
2020-02-02 16:38:48 -04:00

260 lines
6.2 KiB
C++

#ifndef LLARP_CRYPTO_TYPES_HPP
#define LLARP_CRYPTO_TYPES_HPP
#include <crypto/constants.hpp>
#include <router_id.hpp>
#include <util/aligned.hpp>
#include <util/types.hpp>
#include <algorithm>
#include <iostream>
namespace llarp
{
using SharedSecret = AlignedBuffer< SHAREDKEYSIZE >;
using KeyExchangeNonce = AlignedBuffer< 32 >;
struct PubKey final : public AlignedBuffer< PUBKEYSIZE >
{
PubKey() = default;
explicit PubKey(const byte_t *ptr) : AlignedBuffer< SIZE >(ptr)
{
}
explicit PubKey(const Data &data) : AlignedBuffer< SIZE >(data)
{
}
explicit PubKey(const AlignedBuffer< SIZE > &other)
: AlignedBuffer< SIZE >(other)
{
}
std::string
ToString() const;
bool
FromString(const std::string &str);
operator RouterID() const
{
return RouterID(as_array());
}
PubKey &
operator=(const byte_t *ptr)
{
std::copy(ptr, ptr + SIZE, begin());
return *this;
}
};
inline std::ostream &
operator<<(std::ostream &out, const PubKey &k)
{
return out << k.ToString();
}
inline bool
operator==(const PubKey &lhs, const PubKey &rhs)
{
return lhs.as_array() == rhs.as_array();
}
inline bool
operator==(const PubKey &lhs, const RouterID &rhs)
{
return lhs.as_array() == rhs.as_array();
}
inline bool
operator==(const RouterID &lhs, const PubKey &rhs)
{
return lhs.as_array() == rhs.as_array();
}
struct PrivateKey;
/// Stores a sodium "secret key" value, which is actually the seed
/// concatenated with the public key. Note that the seed is *not* the private
/// key value itself, but rather the seed from which it can be calculated.
struct SecretKey final : public AlignedBuffer< SECKEYSIZE >
{
SecretKey() = default;
explicit SecretKey(const byte_t *ptr) : AlignedBuffer< SECKEYSIZE >(ptr)
{
}
// The full data
explicit SecretKey(const AlignedBuffer< SECKEYSIZE > &seed)
: AlignedBuffer< SECKEYSIZE >(seed)
{
}
// Just the seed, we recalculate the pubkey
explicit SecretKey(const AlignedBuffer< 32 > &seed)
{
std::copy(seed.begin(), seed.end(), begin());
Recalculate();
}
/// recalculate public component
bool
Recalculate();
std::ostream &
print(std::ostream &stream, int level, int spaces) const
{
Printer printer(stream, level, spaces);
printer.printValue("secretkey");
return stream;
}
PubKey
toPublic() const
{
return PubKey(data() + 32);
}
/// Computes the private key from the secret key (which is actually the
/// seed)
bool
toPrivate(PrivateKey &key) const;
bool
LoadFromFile(const char *fname);
bool
SaveToFile(const char *fname) const;
};
inline std::ostream &
operator<<(std::ostream &out, const SecretKey &)
{
// return out << k.ToHex();
// make sure we never print out secret keys
return out << "[secretkey]";
}
/// PrivateKey is similar to SecretKey except that it only stores the private
/// key value and a hash, unlike SecretKey which stores the seed from which
/// the private key and hash value are generated. This is primarily intended
/// for use with derived keys, where we can derive the private key but not the
/// seed.
struct PrivateKey final : public AlignedBuffer< 64 >
{
PrivateKey() = default;
explicit PrivateKey(const byte_t *ptr) : AlignedBuffer< 64 >(ptr)
{
}
explicit PrivateKey(const AlignedBuffer< 64 > &key_and_hash)
: AlignedBuffer< 64 >(key_and_hash)
{
}
/// Returns a pointer to the beginning of the 32-byte hash which is used for
/// pseudorandomness when signing with this private key.
const byte_t *
signingHash() const
{
return data() + 32;
}
/// Returns a pointer to the beginning of the 32-byte hash which is used for
/// pseudorandomness when signing with this private key.
byte_t *
signingHash()
{
return data() + 32;
}
std::ostream &
print(std::ostream &stream, int level, int spaces) const
{
Printer printer(stream, level, spaces);
printer.printValue("privatekey");
return stream;
}
/// Computes the public key
bool
toPublic(PubKey &pubkey) const;
};
inline std::ostream &
operator<<(std::ostream &out, const PrivateKey &)
{
// return out << k.ToHex();
// make sure we never print out private keys
return out << "[privatekey]";
}
/// IdentitySecret is a secret key from a service node secret seed
struct IdentitySecret final : public AlignedBuffer< 32 >
{
IdentitySecret() : AlignedBuffer< 32 >()
{
}
/// no copy constructor
explicit IdentitySecret(const IdentitySecret &) = delete;
// no byte data constructor
explicit IdentitySecret(const byte_t *) = delete;
/// load service node seed from file
bool
LoadFromFile(const char *fname);
};
inline std::ostream &
operator<<(std::ostream &out, const IdentitySecret &)
{
// make sure we never print out secret keys
return out << "[IdentitySecret]";
}
using ShortHash = AlignedBuffer< SHORTHASHSIZE >;
using LongHash = AlignedBuffer< HASHSIZE >;
struct Signature final : public AlignedBuffer< SIGSIZE >
{
byte_t *
Hi();
const byte_t *
Hi() const;
byte_t *
Lo();
const byte_t *
Lo() const;
};
using TunnelNonce = AlignedBuffer< TUNNONCESIZE >;
using SymmNonce = AlignedBuffer< NONCESIZE >;
using SymmKey = AlignedBuffer< 32 >;
using PQCipherBlock = AlignedBuffer< PQ_CIPHERTEXTSIZE + 1 >;
using PQPubKey = AlignedBuffer< PQ_PUBKEYSIZE >;
using PQKeyPair = AlignedBuffer< PQ_KEYPAIRSIZE >;
/// PKE(result, publickey, secretkey, nonce)
using path_dh_func = std::function< bool(
SharedSecret &, const PubKey &, const SecretKey &, const TunnelNonce &) >;
/// TKE(result, publickey, secretkey, nonce)
using transport_dh_func = std::function< bool(
SharedSecret &, const PubKey &, const SecretKey &, const TunnelNonce &) >;
/// SH(result, body)
using shorthash_func =
std::function< bool(ShortHash &, const llarp_buffer_t &) >;
} // namespace llarp
#endif