lokinet/include/llarp/net.hpp

343 lines
8.0 KiB
C++

#ifndef LLARP_NET_HPP
#define LLARP_NET_HPP
#include <llarp/address_info.hpp>
#include <llarp/net.h>
#include <functional>
#include <iostream>
#include "logger.hpp"
#include "mem.hpp"
#include <llarp/string_view.hpp>
#include <vector>
#include <stdlib.h> // for itoa
// for addrinfo
#ifndef _WIN32
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#else
#include <winsock2.h>
#include <ws2tcpip.h>
#include <wspiapi.h>
#define inet_aton(x, y) inet_pton(AF_INET, x, y)
#endif
bool
operator==(const sockaddr& a, const sockaddr& b);
bool
operator==(const sockaddr_in& a, const sockaddr_in& b);
bool
operator==(const sockaddr_in6& a, const sockaddr_in6& b);
bool
operator<(const sockaddr_in6& a, const sockaddr_in6& b);
bool
operator<(const in6_addr& a, const in6_addr& b);
bool
operator==(const in6_addr& a, const in6_addr& b);
struct privatesInUse
{
// true if used by real NICs on start
// false if not used, and means we could potentially use it if needed
bool ten; // 16m ips
bool oneSeven; // 1m ips
bool oneNine; // 65k ips
};
struct privatesInUse
llarp_getPrivateIfs();
namespace llarp
{
// clang-format off
struct huint32_t
{
uint32_t h;
constexpr huint32_t
operator &(huint32_t x) const { return huint32_t{uint32_t(h & x.h)}; }
constexpr huint32_t
operator |(huint32_t x) const { return huint32_t{uint32_t(h | x.h)}; }
constexpr huint32_t
operator ^(huint32_t x) const { return huint32_t{uint32_t(h ^ x.h)}; }
constexpr huint32_t
operator ~() const { return huint32_t{uint32_t(~h)}; }
inline huint32_t operator ++() { ++h; return *this; }
inline huint32_t operator --() { --h; return *this; }
constexpr bool operator <(huint32_t x) const { return h < x.h; }
constexpr bool operator ==(huint32_t x) const { return h == x.h; }
friend std::ostream&
operator<<(std::ostream& out, const huint32_t& a)
{
char tmp[INET_ADDRSTRLEN] = {0};
if(inet_ntop(AF_INET, (void*)&a.h, tmp, INET_ADDRSTRLEN))
{
out << tmp;
}
return out;
}
struct Hash
{
inline size_t
operator ()(huint32_t x) const
{
return std::hash< uint32_t >{}(x.h);
}
};
};
struct nuint32_t
{
uint32_t n;
constexpr nuint32_t
operator &(nuint32_t x) const { return nuint32_t{uint32_t(n & x.n)}; }
constexpr nuint32_t
operator |(nuint32_t x) const { return nuint32_t{uint32_t(n | x.n)}; }
constexpr nuint32_t
operator ^(nuint32_t x) const { return nuint32_t{uint32_t(n ^ x.n)}; }
constexpr nuint32_t
operator ~() const { return nuint32_t{uint32_t(~n)}; }
inline nuint32_t operator ++() { ++n; return *this; }
inline nuint32_t operator --() { --n; return *this; }
constexpr bool operator <(nuint32_t x) const { return n < x.n; }
constexpr bool operator ==(nuint32_t x) const { return n == x.n; }
friend std::ostream&
operator<<(std::ostream& out, const nuint32_t& a)
{
char tmp[INET_ADDRSTRLEN] = {0};
if(inet_ntop(AF_INET, (void*)&a.n, tmp, INET_ADDRSTRLEN))
{
out << tmp;
}
return out;
}
struct Hash
{
inline size_t
operator ()(nuint32_t x) const
{
return std::hash< uint32_t >{}(x.n);
}
};
};
struct huint16_t
{
uint16_t h;
constexpr huint16_t
operator &(huint16_t x) const { return huint16_t{uint16_t(h & x.h)}; }
constexpr huint16_t
operator |(huint16_t x) const { return huint16_t{uint16_t(h | x.h)}; }
constexpr huint16_t
operator ~() const { return huint16_t{uint16_t(~h)}; }
inline huint16_t operator ++() { ++h; return *this; }
inline huint16_t operator --() { --h; return *this; }
constexpr bool operator <(huint16_t x) const { return h < x.h; }
constexpr bool operator ==(huint16_t x) const { return h == x.h; }
friend std::ostream&
operator<<(std::ostream& out, const huint16_t& a)
{
char tmp[INET_ADDRSTRLEN] = {0};
if(inet_ntop(AF_INET, (void*)&a.h, tmp, INET_ADDRSTRLEN))
{
out << tmp;
}
return out;
}
struct Hash
{
inline size_t
operator ()(huint16_t x) const
{
return std::hash< uint16_t >{}(x.h);
}
};
};
struct nuint16_t
{
uint16_t n;
constexpr nuint16_t
operator &(nuint16_t x) const { return nuint16_t{uint16_t(n & x.n)}; }
constexpr nuint16_t
operator |(nuint16_t x) const { return nuint16_t{uint16_t(n | x.n)}; }
constexpr nuint16_t
operator ~() const { return nuint16_t{uint16_t(~n)}; }
inline nuint16_t operator ++() { ++n; return *this; }
inline nuint16_t operator --() { --n; return *this; }
constexpr bool operator <(nuint16_t x) const { return n < x.n; }
constexpr bool operator ==(nuint16_t x) const { return n == x.n; }
friend std::ostream&
operator<<(std::ostream& out, const nuint16_t& a)
{
char tmp[INET_ADDRSTRLEN] = {0};
if(inet_ntop(AF_INET, (void*)&a.n, tmp, INET_ADDRSTRLEN))
{
out << tmp;
}
return out;
}
struct Hash
{
inline size_t
operator ()(nuint16_t x) const
{
return std::hash< uint16_t >{}(x.n);
}
};
};
// clang-format on
static inline nuint32_t
xhtonl(huint32_t x)
{
return nuint32_t{htonl(x.h)};
}
static inline huint32_t
xntohl(nuint32_t x)
{
return huint32_t{ntohl(x.n)};
}
static inline nuint16_t
xhtons(huint16_t x)
{
return nuint16_t{htons(x.h)};
}
static inline huint16_t
xntohs(nuint16_t x)
{
return huint16_t{ntohs(x.n)};
}
struct IPRange
{
huint32_t addr;
huint32_t netmask_bits;
/// return true if ip is contained in this ip range
bool
Contains(const huint32_t& ip) const
{
// TODO: do this "better"
return (addr & netmask_bits) == (ip & netmask_bits);
}
friend std::ostream&
operator<<(std::ostream& out, const IPRange& a)
{
char strbuf[32] = {0};
char netbuf[32] = {0};
inet_ntop(AF_INET, &a.addr, strbuf, sizeof(strbuf));
inet_ntop(AF_INET, &a.netmask_bits, netbuf, sizeof(netbuf));
out << std::string(strbuf) + "/" + std::string(netbuf);
return out;
}
};
/// get a netmask with the higest numset bits set
constexpr uint32_t
__netmask_ipv4_bits(uint32_t numset)
{
return (32 - numset)
? (1 << (32 - (numset + 1))) | __netmask_ipv4_bits(numset + 1)
: 0;
}
/// get an ipv4 netmask given some /N range
constexpr huint32_t
netmask_ipv4_bits(uint32_t num)
{
return huint32_t{__netmask_ipv4_bits(32 - num)};
}
constexpr huint32_t
ipaddr_ipv4_bits(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
{
return huint32_t{(a) | (b << 8) | (c << 16) | (d << 24)};
}
constexpr IPRange
iprange_ipv4(byte_t a, byte_t b, byte_t c, byte_t d, byte_t mask)
{
return IPRange{ipaddr_ipv4_bits(a, b, c, d), netmask_ipv4_bits(mask)};
}
bool
IsIPv4Bogon(const huint32_t& addr);
constexpr bool
ipv6_is_siit(const in6_addr& addr)
{
return addr.s6_addr[11] == 0xff && addr.s6_addr[10] == 0xff
&& addr.s6_addr[9] == 0 && addr.s6_addr[8] == 0 && addr.s6_addr[7] == 0
&& addr.s6_addr[6] == 0 && addr.s6_addr[5] == 0 && addr.s6_addr[4] == 0
&& addr.s6_addr[3] == 0 && addr.s6_addr[2] == 0 && addr.s6_addr[1] == 0
&& addr.s6_addr[0] == 0;
}
bool
IsBogon(const in6_addr& addr);
bool
IsBogonRange(const in6_addr& host, const in6_addr& mask);
struct Addr; // fwd declr
bool
AllInterfaces(int af, Addr& addr);
/// get first network interface with public address
bool
GetBestNetIF(std::string& ifname, int af = AF_INET);
/// look at adapter ranges and find a free one
std::string
findFreePrivateRange();
/// look at adapter names and find a free one
std::string
findFreeLokiTunIfName();
/// get network interface address for network interface with ifname
bool
GetIFAddr(const std::string& ifname, Addr& addr, int af = AF_INET);
} // namespace llarp
#include <llarp/net_inaddr.hpp>
#include <llarp/net_addr.hpp>
#endif