mirror of
https://github.com/oxen-io/lokinet.git
synced 2024-11-13 01:10:24 +00:00
604 lines
19 KiB
C++
604 lines
19 KiB
C++
/**
|
|
* @file condition_variable.h
|
|
* @brief std::condition_variable implementation for MinGW
|
|
*
|
|
* (c) 2013-2016 by Mega Limited, Auckland, New Zealand
|
|
* @author Alexander Vassilev
|
|
*
|
|
* @copyright Simplified (2-clause) BSD License.
|
|
* You should have received a copy of the license along with this
|
|
* program.
|
|
*
|
|
* This code is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* @note
|
|
* This file may become part of the mingw-w64 runtime package. If/when this
|
|
* happens, the appropriate license will be added, i.e. this code will become
|
|
* dual-licensed, and the current BSD 2-clause license will stay.
|
|
*/
|
|
|
|
#ifndef MINGW_CONDITIONAL_VARIABLE_H
|
|
#define MINGW_CONDITIONAL_VARIABLE_H
|
|
|
|
#if !defined(__cplusplus) || (__cplusplus < 201103L)
|
|
#error A C++11 compiler is required!
|
|
#endif
|
|
// Use the standard classes for std::, if available.
|
|
#include <condition_variable>
|
|
|
|
#include <windows.h>
|
|
#include <atomic>
|
|
#include <cassert>
|
|
#include <chrono>
|
|
#include <system_error>
|
|
#include "mingw.mutex.h"
|
|
#include "mingw.shared_mutex.h"
|
|
|
|
namespace mingw_stdthread
|
|
{
|
|
#if defined(__MINGW32__) && !defined(_GLIBCXX_HAS_GTHREADS)
|
|
enum class cv_status
|
|
{
|
|
no_timeout,
|
|
timeout
|
|
};
|
|
#else
|
|
using std::cv_status;
|
|
#endif
|
|
namespace xp
|
|
{
|
|
// Include the XP-compatible condition_variable classes only if actually
|
|
// compiling for XP. The XP-compatible classes are slower than the newer
|
|
// versions, and depend on features not compatible with Windows Phone 8.
|
|
#if(WINVER < _WIN32_WINNT_VISTA)
|
|
class condition_variable_any
|
|
{
|
|
protected:
|
|
recursive_mutex mMutex;
|
|
std::atomic< int > mNumWaiters;
|
|
HANDLE mSemaphore;
|
|
HANDLE mWakeEvent;
|
|
|
|
public:
|
|
typedef HANDLE native_handle_type;
|
|
native_handle_type
|
|
native_handle()
|
|
{
|
|
return mSemaphore;
|
|
}
|
|
condition_variable_any(const condition_variable_any&) = delete;
|
|
condition_variable_any&
|
|
operator=(const condition_variable_any&) = delete;
|
|
condition_variable_any()
|
|
: mMutex()
|
|
, mNumWaiters(0)
|
|
, mSemaphore(CreateSemaphore(NULL, 0, 0xFFFF, NULL))
|
|
, mWakeEvent(CreateEvent(NULL, FALSE, FALSE, NULL))
|
|
{
|
|
}
|
|
~condition_variable_any()
|
|
{
|
|
CloseHandle(mWakeEvent);
|
|
CloseHandle(mSemaphore);
|
|
}
|
|
|
|
protected:
|
|
template < class M >
|
|
bool
|
|
wait_impl(M& lock, DWORD timeout)
|
|
{
|
|
{
|
|
lock_guard< recursive_mutex > guard(mMutex);
|
|
mNumWaiters++;
|
|
}
|
|
lock.unlock();
|
|
DWORD ret = WaitForSingleObject(mSemaphore, timeout);
|
|
|
|
mNumWaiters--;
|
|
SetEvent(mWakeEvent);
|
|
lock.lock();
|
|
if(ret == WAIT_OBJECT_0)
|
|
return true;
|
|
else if(ret == WAIT_TIMEOUT)
|
|
return false;
|
|
// 2 possible cases:
|
|
// 1)The point in notify_all() where we determine the count to
|
|
// increment the semaphore with has not been reached yet:
|
|
// we just need to decrement mNumWaiters, but setting the event does not
|
|
// hurt
|
|
//
|
|
// 2)Semaphore has just been released with mNumWaiters just before
|
|
// we decremented it. This means that the semaphore count
|
|
// after all waiters finish won't be 0 - because not all waiters
|
|
// woke up by acquiring the semaphore - we woke up by a timeout.
|
|
// The notify_all() must handle this grafecully
|
|
//
|
|
else
|
|
{
|
|
using namespace std;
|
|
throw system_error(make_error_code(errc::protocol_error));
|
|
}
|
|
}
|
|
|
|
public:
|
|
template < class M >
|
|
void
|
|
wait(M& lock)
|
|
{
|
|
wait_impl(lock, INFINITE);
|
|
}
|
|
template < class M, class Predicate >
|
|
void
|
|
wait(M& lock, Predicate pred)
|
|
{
|
|
while(!pred())
|
|
{
|
|
wait(lock);
|
|
};
|
|
}
|
|
|
|
void
|
|
notify_all() noexcept
|
|
{
|
|
lock_guard< recursive_mutex > lock(
|
|
mMutex); // block any further wait requests until all current
|
|
// waiters are unblocked
|
|
if(mNumWaiters.load() <= 0)
|
|
return;
|
|
|
|
ReleaseSemaphore(mSemaphore, mNumWaiters, NULL);
|
|
while(mNumWaiters > 0)
|
|
{
|
|
auto ret = WaitForSingleObject(mWakeEvent, 1000);
|
|
if(ret == WAIT_FAILED || ret == WAIT_ABANDONED)
|
|
std::terminate();
|
|
}
|
|
assert(mNumWaiters == 0);
|
|
// in case some of the waiters timed out just after we released the
|
|
// semaphore by mNumWaiters, it won't be zero now, because not all
|
|
// waiters woke up by acquiring the semaphore. So we must zero the
|
|
// semaphore before we accept waiters for the next event See _wait_impl
|
|
// for details
|
|
while(WaitForSingleObject(mSemaphore, 0) == WAIT_OBJECT_0)
|
|
;
|
|
}
|
|
void
|
|
notify_one() noexcept
|
|
{
|
|
lock_guard< recursive_mutex > lock(mMutex);
|
|
int targetWaiters = mNumWaiters.load() - 1;
|
|
if(targetWaiters <= -1)
|
|
return;
|
|
ReleaseSemaphore(mSemaphore, 1, NULL);
|
|
while(mNumWaiters > targetWaiters)
|
|
{
|
|
auto ret = WaitForSingleObject(mWakeEvent, 1000);
|
|
if(ret == WAIT_FAILED || ret == WAIT_ABANDONED)
|
|
std::terminate();
|
|
}
|
|
assert(mNumWaiters == targetWaiters);
|
|
}
|
|
template < class M, class Rep, class Period >
|
|
cv_status
|
|
wait_for(M& lock, const std::chrono::duration< Rep, Period >& rel_time)
|
|
{
|
|
using namespace std::chrono;
|
|
long long timeout = duration_cast< milliseconds >(rel_time).count();
|
|
if(timeout < 0)
|
|
timeout = 0;
|
|
bool ret = wait_impl(lock, (DWORD)timeout);
|
|
return ret ? cv_status::no_timeout : cv_status::timeout;
|
|
}
|
|
|
|
template < class M, class Rep, class Period, class Predicate >
|
|
bool
|
|
wait_for(M& lock, const std::chrono::duration< Rep, Period >& rel_time,
|
|
Predicate pred)
|
|
{
|
|
return wait_until(lock, std::chrono::steady_clock::now() + rel_time,
|
|
pred);
|
|
}
|
|
template < class M, class Clock, class Duration >
|
|
cv_status
|
|
wait_until(M& lock,
|
|
const std::chrono::time_point< Clock, Duration >& abs_time)
|
|
{
|
|
return wait_for(lock, abs_time - Clock::now());
|
|
}
|
|
template < class M, class Clock, class Duration, class Predicate >
|
|
bool
|
|
wait_until(M& lock,
|
|
const std::chrono::time_point< Clock, Duration >& abs_time,
|
|
Predicate pred)
|
|
{
|
|
while(!pred())
|
|
{
|
|
if(wait_until(lock, abs_time) == cv_status::timeout)
|
|
{
|
|
return pred();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
class condition_variable : protected condition_variable_any
|
|
{
|
|
protected:
|
|
typedef condition_variable_any base;
|
|
|
|
public:
|
|
using base::base;
|
|
using base::native_handle;
|
|
using base::native_handle_type;
|
|
using base::notify_all;
|
|
using base::notify_one;
|
|
void
|
|
wait(unique_lock< mutex >& lock)
|
|
{
|
|
base::wait(lock);
|
|
}
|
|
template < class Predicate >
|
|
void
|
|
wait(unique_lock< mutex >& lock, Predicate pred)
|
|
{
|
|
base::wait(lock, pred);
|
|
}
|
|
template < class Rep, class Period >
|
|
cv_status
|
|
wait_for(unique_lock< mutex >& lock,
|
|
const std::chrono::duration< Rep, Period >& rel_time)
|
|
{
|
|
return base::wait_for(lock, rel_time);
|
|
}
|
|
template < class Rep, class Period, class Predicate >
|
|
bool
|
|
wait_for(unique_lock< mutex >& lock,
|
|
const std::chrono::duration< Rep, Period >& rel_time,
|
|
Predicate pred)
|
|
{
|
|
return base::wait_for(lock, rel_time, pred);
|
|
}
|
|
template < class Clock, class Duration >
|
|
cv_status
|
|
wait_until(unique_lock< mutex >& lock,
|
|
const std::chrono::time_point< Clock, Duration >& abs_time)
|
|
{
|
|
return base::wait_until(lock, abs_time);
|
|
}
|
|
template < class Clock, class Duration, class Predicate >
|
|
bool
|
|
wait_until(unique_lock< mutex >& lock,
|
|
const std::chrono::time_point< Clock, Duration >& abs_time,
|
|
Predicate pred)
|
|
{
|
|
return base::wait_until(lock, abs_time, pred);
|
|
}
|
|
};
|
|
#endif // Compiling for XP
|
|
} // namespace xp
|
|
|
|
#if(WINVER >= _WIN32_WINNT_VISTA)
|
|
namespace vista
|
|
{
|
|
// If compiling for Vista or higher, use the native condition variable.
|
|
class condition_variable
|
|
{
|
|
protected:
|
|
CONDITION_VARIABLE cvariable_;
|
|
|
|
#if STDMUTEX_RECURSION_CHECKS
|
|
template < typename MTX >
|
|
inline static void
|
|
before_wait(MTX* pmutex)
|
|
{
|
|
pmutex->mOwnerThread.checkSetOwnerBeforeUnlock();
|
|
}
|
|
template < typename MTX >
|
|
inline static void
|
|
after_wait(MTX* pmutex)
|
|
{
|
|
pmutex->mOwnerThread.setOwnerAfterLock(GetCurrentThreadId());
|
|
}
|
|
#else
|
|
inline static void
|
|
before_wait(void*)
|
|
{
|
|
}
|
|
inline static void
|
|
after_wait(void*)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
bool
|
|
wait_impl(unique_lock< xp::mutex >& lock, DWORD time)
|
|
{
|
|
static_assert(std::is_same< typename xp::mutex::native_handle_type,
|
|
PCRITICAL_SECTION >::value,
|
|
"Native Win32 condition variable requires std::mutex to \
|
|
use native Win32 critical section objects.");
|
|
xp::mutex* pmutex = lock.release();
|
|
before_wait(pmutex);
|
|
BOOL success = SleepConditionVariableCS(&cvariable_,
|
|
pmutex->native_handle(), time);
|
|
after_wait(pmutex);
|
|
lock = unique_lock< xp::mutex >(*pmutex, adopt_lock);
|
|
return success;
|
|
}
|
|
|
|
bool
|
|
wait_unique(windows7::mutex* pmutex, DWORD time)
|
|
{
|
|
before_wait(pmutex);
|
|
BOOL success = SleepConditionVariableSRW(
|
|
native_handle(), pmutex->native_handle(), time, 0);
|
|
after_wait(pmutex);
|
|
return success;
|
|
}
|
|
bool
|
|
wait_impl(unique_lock< windows7::mutex >& lock, DWORD time)
|
|
{
|
|
windows7::mutex* pmutex = lock.release();
|
|
bool success = wait_unique(pmutex, time);
|
|
lock = unique_lock< windows7::mutex >(*pmutex, adopt_lock);
|
|
return success;
|
|
}
|
|
|
|
public:
|
|
typedef PCONDITION_VARIABLE native_handle_type;
|
|
native_handle_type
|
|
native_handle(void)
|
|
{
|
|
return &cvariable_;
|
|
}
|
|
|
|
condition_variable(void) : cvariable_()
|
|
{
|
|
InitializeConditionVariable(&cvariable_);
|
|
}
|
|
|
|
~condition_variable(void) = default;
|
|
|
|
condition_variable(const condition_variable&) = delete;
|
|
condition_variable&
|
|
operator=(const condition_variable&) = delete;
|
|
|
|
void
|
|
notify_one(void) noexcept
|
|
{
|
|
WakeConditionVariable(&cvariable_);
|
|
}
|
|
|
|
void
|
|
notify_all(void) noexcept
|
|
{
|
|
WakeAllConditionVariable(&cvariable_);
|
|
}
|
|
|
|
void
|
|
wait(unique_lock< mutex >& lock)
|
|
{
|
|
wait_impl(lock, INFINITE);
|
|
}
|
|
|
|
template < class Predicate >
|
|
void
|
|
wait(unique_lock< mutex >& lock, Predicate pred)
|
|
{
|
|
while(!pred())
|
|
wait(lock);
|
|
}
|
|
|
|
template < class Rep, class Period >
|
|
cv_status
|
|
wait_for(unique_lock< mutex >& lock,
|
|
const std::chrono::duration< Rep, Period >& rel_time)
|
|
{
|
|
using namespace std::chrono;
|
|
auto time = duration_cast< milliseconds >(rel_time).count();
|
|
if(time < 0)
|
|
time = 0;
|
|
bool result = wait_impl(lock, static_cast< DWORD >(time));
|
|
return result ? cv_status::no_timeout : cv_status::timeout;
|
|
}
|
|
|
|
template < class Rep, class Period, class Predicate >
|
|
bool
|
|
wait_for(unique_lock< mutex >& lock,
|
|
const std::chrono::duration< Rep, Period >& rel_time,
|
|
Predicate pred)
|
|
{
|
|
return wait_until(lock, std::chrono::steady_clock::now() + rel_time,
|
|
std::move(pred));
|
|
}
|
|
template < class Clock, class Duration >
|
|
cv_status
|
|
wait_until(unique_lock< mutex >& lock,
|
|
const std::chrono::time_point< Clock, Duration >& abs_time)
|
|
{
|
|
return wait_for(lock, abs_time - Clock::now());
|
|
}
|
|
template < class Clock, class Duration, class Predicate >
|
|
bool
|
|
wait_until(unique_lock< mutex >& lock,
|
|
const std::chrono::time_point< Clock, Duration >& abs_time,
|
|
Predicate pred)
|
|
{
|
|
while(!pred())
|
|
{
|
|
if(wait_until(lock, abs_time) == cv_status::timeout)
|
|
{
|
|
return pred();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class condition_variable_any : protected condition_variable
|
|
{
|
|
protected:
|
|
typedef condition_variable base;
|
|
typedef windows7::shared_mutex native_shared_mutex;
|
|
|
|
// When available, the SRW-based mutexes should be faster than the
|
|
// CriticalSection-based mutexes. Only try_lock will be unavailable in
|
|
// Vista, and try_lock is not used by condition_variable_any.
|
|
windows7::mutex internal_mutex_;
|
|
|
|
template < class L >
|
|
bool
|
|
wait_impl(L& lock, DWORD time)
|
|
{
|
|
unique_lock< decltype(internal_mutex_) > internal_lock(internal_mutex_);
|
|
lock.unlock();
|
|
bool success = base::wait_impl(internal_lock, time);
|
|
lock.lock();
|
|
return success;
|
|
}
|
|
// If the lock happens to be called on a native Windows mutex, skip any
|
|
// extra
|
|
// contention.
|
|
inline bool
|
|
wait_impl(unique_lock< mutex >& lock, DWORD time)
|
|
{
|
|
return base::wait_impl(lock, time);
|
|
}
|
|
// Some shared_mutex functionality is available even in Vista, but it's
|
|
// not
|
|
// until Windows 7 that a full implementation is natively possible. The
|
|
// class itself is defined, with missing features, at the Vista feature
|
|
// level.
|
|
static_assert(CONDITION_VARIABLE_LOCKMODE_SHARED != 0,
|
|
"The flag \
|
|
CONDITION_VARIABLE_LOCKMODE_SHARED is not defined as expected. The value for \
|
|
exclusive mode is unknown (not specified by Microsoft Dev Center), but assumed \
|
|
to be 0. There is a conflict with CONDITION_VARIABLE_LOCKMODE_SHARED.");
|
|
//#if (WINVER >= _WIN32_WINNT_VISTA)
|
|
bool
|
|
wait_impl(unique_lock< native_shared_mutex >& lock, DWORD time)
|
|
{
|
|
native_shared_mutex* pmutex = lock.release();
|
|
bool success = wait_unique(pmutex, time);
|
|
lock = unique_lock< native_shared_mutex >(*pmutex, adopt_lock);
|
|
return success;
|
|
}
|
|
bool
|
|
wait_impl(shared_lock< native_shared_mutex >& lock, DWORD time)
|
|
{
|
|
native_shared_mutex* pmutex = lock.release();
|
|
BOOL success = SleepConditionVariableSRW(
|
|
base::native_handle(), pmutex->native_handle(), time,
|
|
CONDITION_VARIABLE_LOCKMODE_SHARED);
|
|
lock = shared_lock< native_shared_mutex >(*pmutex, adopt_lock);
|
|
return success;
|
|
}
|
|
//#endif
|
|
public:
|
|
typedef typename base::native_handle_type native_handle_type;
|
|
using base::native_handle;
|
|
|
|
condition_variable_any(void) : base(), internal_mutex_()
|
|
{
|
|
}
|
|
|
|
~condition_variable_any(void) = default;
|
|
|
|
using base::notify_all;
|
|
using base::notify_one;
|
|
|
|
template < class L >
|
|
void
|
|
wait(L& lock)
|
|
{
|
|
wait_impl(lock, INFINITE);
|
|
}
|
|
|
|
template < class L, class Predicate >
|
|
void
|
|
wait(L& lock, Predicate pred)
|
|
{
|
|
while(!pred())
|
|
wait(lock);
|
|
}
|
|
|
|
template < class L, class Rep, class Period >
|
|
cv_status
|
|
wait_for(L& lock, const std::chrono::duration< Rep, Period >& period)
|
|
{
|
|
using namespace std::chrono;
|
|
auto time = duration_cast< milliseconds >(period).count();
|
|
if(time < 0)
|
|
time = 0;
|
|
bool result = wait_impl(lock, static_cast< DWORD >(time));
|
|
return result ? cv_status::no_timeout : cv_status::timeout;
|
|
}
|
|
|
|
template < class L, class Rep, class Period, class Predicate >
|
|
bool
|
|
wait_for(L& lock, const std::chrono::duration< Rep, Period >& period,
|
|
Predicate pred)
|
|
{
|
|
return wait_until(lock, std::chrono::steady_clock::now() + period,
|
|
std::move(pred));
|
|
}
|
|
template < class L, class Clock, class Duration >
|
|
cv_status
|
|
wait_until(L& lock,
|
|
const std::chrono::time_point< Clock, Duration >& abs_time)
|
|
{
|
|
return wait_for(lock, abs_time - Clock::now());
|
|
}
|
|
template < class L, class Clock, class Duration, class Predicate >
|
|
bool
|
|
wait_until(L& lock,
|
|
const std::chrono::time_point< Clock, Duration >& abs_time,
|
|
Predicate pred)
|
|
{
|
|
while(!pred())
|
|
{
|
|
if(wait_until(lock, abs_time) == cv_status::timeout)
|
|
{
|
|
return pred();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
} // Namespace vista
|
|
#endif
|
|
#if WINVER < 0x0600
|
|
using xp::condition_variable;
|
|
using xp::condition_variable_any;
|
|
#else
|
|
using vista::condition_variable;
|
|
using vista::condition_variable_any;
|
|
#endif
|
|
} // Namespace mingw_stdthread
|
|
|
|
// Push objects into std, but only if they are not already there.
|
|
namespace std
|
|
{
|
|
// Because of quirks of the compiler, the common "using namespace std;"
|
|
// directive would flatten the namespaces and introduce ambiguity where there
|
|
// was none. Direct specification (std::), however, would be unaffected.
|
|
// Take the safe option, and include only in the presence of MinGW's win32
|
|
// implementation.
|
|
#if defined(__MINGW32__) && !defined(_GLIBCXX_HAS_GTHREADS)
|
|
using mingw_stdthread::condition_variable;
|
|
using mingw_stdthread::condition_variable_any;
|
|
using mingw_stdthread::cv_status;
|
|
#elif !defined(MINGW_STDTHREAD_REDUNDANCY_WARNING) // Skip repetition
|
|
#define MINGW_STDTHREAD_REDUNDANCY_WARNING
|
|
#pragma message \
|
|
"This version of MinGW seems to include a win32 port of\
|
|
pthreads, and probably already has C++11 std threading classes implemented,\
|
|
based on pthreads. These classes, found in namespace std, are not overridden\
|
|
by the mingw-std-thread library. If you would still like to use this\
|
|
implementation (as it is more lightweight), use the classes provided in\
|
|
namespace mingw_stdthread."
|
|
#endif
|
|
} // namespace std
|
|
#endif // MINGW_CONDITIONAL_VARIABLE_H
|