lokinet/test/service/test_llarp_service_identity.cpp
Jason Rhinelander f4f5ab0109 "Refactor" aka delete Crypto/CryptoManager
- Get rid of CryptoManager.
- Get rid of Crypto.
- Move all the Crypto instance methods to llarp::crypto functions.
  (None of them needed to be methods at all, so this is simple).
- Move sodium/ntru initialization into static initialization.
- Add llarp::csrng, which is an available llarp::CSRNG instance which is
  a bit easier than needing to construct a `CSRNG rng{};` in various
  places.
- Various related small simplifications/cleanups.
2023-10-24 08:40:18 -07:00

217 lines
7.1 KiB
C++

#include <llarp/crypto/crypto.hpp>
#include <llarp/crypto/crypto_libsodium.hpp>
#include <sodium/crypto_scalarmult_ed25519.h>
#include <llarp/path/path.hpp>
#include <llarp/service/address.hpp>
#include <llarp/service/identity.hpp>
#include <llarp/service/intro_set.hpp>
#include <llarp/util/time.hpp>
#include <catch2/catch.hpp>
using namespace llarp;
TEST_CASE("test service address from string")
{
service::Identity ident{};
auto str = ident.pub.Addr().ToString();
service::Address addr;
CHECK(addr.FromString(str));
CHECK(addr == ident.pub.Addr());
}
TEST_CASE("test service::Identity throws on error")
{
fs::path p = test::randFilename();
CHECK(not fs::exists(fs::status(p)));
test::FileGuard guard(p);
std::error_code code;
std::fstream file;
file.open(p.string(), std::ios::out);
CHECK(file.is_open());
file << p;
file.close();
service::Identity identity;
REQUIRE_THROWS(identity.EnsureKeys(p, false));
}
TEST_CASE("test subkey derivation", "[crypto]")
{
// These values came out of a run of Tor's test code, so that we can confirm we are doing the same
// blinding subkey crypto math as Tor. Our hash value is generated differently so we use the hash
// from a Tor random test suite run.
AlignedBuffer<32> seed{{
0xd0, 0x98, 0x9d, 0x83, 0x0e, 0x03, 0xe1, 0x4e, 0xf6, 0xaf, 0x71, 0xa0, 0xa1, 0xfc, 0x88, 0x38, 0xac, 0xfc, 0xd8, 0x95, 0x06, 0x54, 0x9f, 0x3e, 0xdb, 0xb0, 0xf5, 0x3a, 0xc9, 0x0e, 0x47, 0x90,
}};
AlignedBuffer<64> root_key_data{{
0xc0, 0xe6, 0x58, 0xd6, 0x01, 0xc1, 0xb4, 0xc2, 0x94, 0xb8, 0xf7, 0xa3, 0xec, 0x3e, 0x81, 0xd6, 0x82, 0xb4, 0x89, 0x5c, 0x6d, 0xbf, 0x5c, 0x6e, 0x20, 0xad, 0x39, 0x8f, 0xf4, 0x8f, 0x43, 0x4f,
0x56, 0x4f, 0xdc, 0x22, 0x33, 0x19, 0xb9, 0xbb, 0x4e, 0xc0, 0xba, 0x84, 0x2d, 0xe3, 0xde, 0xf2, 0x26, 0xe8, 0xf7, 0xa8, 0x8f, 0x82, 0x41, 0xe3, 0x1f, 0x5d, 0xe5, 0x56, 0x3a, 0xf4, 0x5e, 0x3c,
}};
AlignedBuffer<32> root_pub_data{{
0x4a, 0x34, 0x3f, 0x9e, 0xf3, 0xda, 0x3d, 0x80, 0x07, 0xc7, 0x09, 0xf9, 0x2f, 0x72, 0xd3, 0x76, 0x56, 0x5a, 0x4c, 0x13, 0xdf, 0xb8, 0xce, 0xc8, 0x53, 0x77, 0x0a, 0x99, 0xbc, 0x06, 0xa7, 0xc0,
}};
AlignedBuffer<32> hash{{
0x64, 0xad, 0xde, 0x17, 0x69, 0x33, 0x92, 0x25, 0x9c, 0xa3, 0xd7, 0x85, 0xa5, 0x2d, 0x3a, 0xa5, 0xa3, 0x9c, 0xdb, 0x99, 0x57, 0xac, 0x54, 0x14, 0x4f, 0x11, 0xa9, 0x90, 0xa0, 0xca, 0xcb, 0xfe,
}};
AlignedBuffer<64> derived_key_data{{
0x96, 0x02, 0xba, 0x16, 0x87, 0x40, 0xb7, 0xb6, 0xc9, 0x0f, 0x85, 0x7b, 0xdc, 0xa9, 0x13, 0x9d, 0x1b, 0xf5, 0x01, 0x54, 0xd1, 0xd1, 0x8f, 0x75, 0x06, 0x4d, 0x4c, 0xea, 0x33, 0xc4, 0xc6, 0x00,
0xb0, 0xef, 0x29, 0x37, 0x7c, 0xe9, 0x84, 0x43, 0x5a, 0x79, 0xa2, 0x3b, 0xef, 0xcd, 0x1c, 0x43, 0xf1, 0x88, 0xff, 0x50, 0xaf, 0x9c, 0x07, 0x6a, 0xc6, 0x19, 0xfb, 0xcc, 0x5d, 0x48, 0x75, 0x92,
}};
AlignedBuffer<32> derived_pub_data{{
0x13, 0xa6, 0x61, 0x5b, 0x78, 0x64, 0x03, 0xd4, 0x8a, 0x88, 0xaa, 0x0d, 0x89, 0xdf, 0x08, 0x46, 0xb3, 0x2f, 0xa9, 0xbb, 0xa8, 0xcc, 0xe1, 0xac, 0x4c, 0xae, 0xc9, 0xd2, 0xf1, 0x35, 0xd1, 0x33,
}};
SecretKey root{seed};
CHECK(root.toPublic().as_array() == root_pub_data.as_array());
PrivateKey root_key;
CHECK(root.toPrivate(root_key));
CHECK(root_key.as_array() == root_key_data.as_array());
PrivateKey aprime; // a'
CHECK(crypto::derive_subkey_private(aprime, root, 0, &hash));
// We use a different signing hash than Tor
// only the private key value (the first 32 bytes) will match:
CHECK(std::memcmp(aprime.data(), derived_key_data.data(), 32) == 0);
PubKey Aprime; // A'
CHECK(crypto::derive_subkey(Aprime, root.toPublic(), 0, &hash));
CHECK(Aprime.as_array() == derived_pub_data.as_array());
}
TEST_CASE("test root key signing" , "[crypto]")
{
SecretKey root_key;
crypto::identity_keygen(root_key);
// We have our own reimplementation of sodium's signing function which can work with derived
// private keys (unlike sodium's built-in which requires starting from a seed). This tests that
// signing using either path produces an identical signature.
const std::string nibbs = "Nibbler";
llarp_buffer_t nibbs_buf{nibbs.data(), nibbs.size()};
Signature sig_sodium;
CHECK(crypto::sign(sig_sodium, root_key, nibbs_buf));
PrivateKey root_privkey;
CHECK(root_key.toPrivate(root_privkey));
Signature sig_ours;
CHECK(crypto::sign(sig_ours, root_privkey, nibbs_buf));
CHECK(sig_sodium == sig_ours);
}
TEST_CASE("Test generate derived key", "[crypto]")
{
SecretKey root_key;
crypto::identity_keygen(root_key);
PrivateKey root_privkey;
CHECK(root_key.toPrivate(root_privkey));
PrivateKey a;
PubKey A;
CHECK(root_key.toPrivate(a));
CHECK(a.toPublic(A));
CHECK(A == root_key.toPublic());
{
// paranoid check to ensure this works as expected
PubKey aB;
crypto_scalarmult_ed25519_base(aB.data(), a.data());
CHECK(A == aB);
}
PrivateKey aprime; // a'
CHECK(crypto::derive_subkey_private(aprime, root_key, 1));
PubKey Aprime; // A'
CHECK(crypto::derive_subkey(Aprime, A, 1));
// We should also be able to derive A' via a':
PubKey Aprime_alt;
CHECK(aprime.toPublic(Aprime_alt));
CHECK(Aprime == Aprime_alt);
// Generate using the same constant and make sure we get an identical privkey (including the
// signing hash value)
PrivateKey aprime_repeat;
CHECK(crypto::derive_subkey_private(aprime_repeat, root_key, 1));
CHECK(aprime_repeat == aprime);
// Generate another using a different constant and make sure we get something different
PrivateKey a2;
PubKey A2;
CHECK(crypto::derive_subkey_private(a2, root_key, 2));
CHECK(crypto::derive_subkey(A2, A, 2));
CHECK(A2 != Aprime);
CHECK(a2.ToHex().substr(0, 64) != aprime.ToHex().substr(0, 64));
CHECK(a2.ToHex().substr(64) != aprime.ToHex().substr(64)); // The hash should be different too
}
TEST_CASE("Test signing with derived key", "[crypto]")
{
SecretKey root_key;
crypto::identity_keygen(root_key);
PrivateKey root_privkey;
root_key.toPrivate(root_privkey);
PrivateKey a;
PubKey A;
root_key.toPrivate(a);
a.toPublic(A);
PrivateKey aprime; // a'
crypto::derive_subkey_private(aprime, root_key, 1);
PubKey Aprime; // A'
crypto::derive_subkey(Aprime, A, 1);
const std::string s = "Jeff loves one-letter variable names.";
llarp_buffer_t buf(s.data(), s.size());
Signature sig;
CHECK(crypto::sign(sig, aprime, buf));
CHECK(crypto::verify(Aprime, buf, sig));
}
TEST_CASE("Test sign and encrypt introset", "[crypto]")
{
service::Identity ident;
ident.RegenerateKeys();
service::Address addr;
CHECK(ident.pub.CalculateAddress(addr.as_array()));
service::IntroSet introset;
auto now = time_now_ms();
introset.timestampSignedAt = now;
while(introset.intros.size() < 10)
{
service::Introduction intro;
intro.expiresAt = now + (path::default_lifetime / 2);
intro.router.Randomize();
intro.pathID.Randomize();
introset.intros.emplace_back(std::move(intro));
}
const auto maybe = ident.EncryptAndSignIntroSet(introset, now);
CHECK(maybe.has_value());
CHECK(maybe->Verify(now));
PubKey blind_key;
const PubKey root_key(addr.as_array());
CHECK(crypto::derive_subkey(blind_key, root_key, 1));
CHECK(blind_key == maybe->derivedSigningKey);
}