lokinet/llarp/quic/tunnel.cpp
2021-04-19 06:59:07 -04:00

698 lines
24 KiB
C++

#include "tunnel.hpp"
#include "service/convotag.hpp"
#include "service/endpoint.hpp"
#include "service/name.hpp"
#include "stream.hpp"
#include <limits>
#include <llarp/util/logging/buffer.hpp>
#include <llarp/util/logging/logger.hpp>
#include <llarp/util/str.hpp>
#include <llarp/ev/ev_libuv.hpp>
#include <memory>
#include <stdexcept>
#include <type_traits>
namespace llarp::quic
{
namespace
{
// Takes data from the tcp connection and pushes it down the quic tunnel
void
on_outgoing_data(uvw::DataEvent& event, uvw::TCPHandle& client)
{
auto stream = client.data<Stream>();
assert(stream);
std::string_view data{event.data.get(), event.length};
auto peer = client.peer();
LogTrace(peer.ip, ":", peer.port, " → lokinet ", buffer_printer{data});
// Steal the buffer from the DataEvent's unique_ptr<char[]>:
stream->append_buffer(reinterpret_cast<const std::byte*>(event.data.release()), event.length);
if (stream->used() >= tunnel::PAUSE_SIZE)
{
LogDebug(
"quic tunnel is congested (have ",
stream->used(),
" bytes in flight); pausing local tcp connection reads");
client.stop();
stream->when_available([](Stream& s) {
auto client = s.data<uvw::TCPHandle>();
if (s.used() < tunnel::PAUSE_SIZE)
{
LogDebug("quic tunnel is no longer congested; resuming tcp connection reading");
client->read();
return true;
}
return false;
});
}
else
{
LogDebug("Queued ", event.length, " bytes");
}
}
// Received data from the quic tunnel and sends it to the TCP connection
void
on_incoming_data(Stream& stream, bstring_view bdata)
{
auto tcp = stream.data<uvw::TCPHandle>();
if (!tcp)
return; // TCP connection is gone, which would have already sent a stream close, so just
// drop it.
std::string_view data{reinterpret_cast<const char*>(bdata.data()), bdata.size()};
auto peer = tcp->peer();
LogTrace(peer.ip, ":", peer.port, " ← lokinet ", buffer_printer{data});
if (data.empty())
return;
// Try first to write immediately from the existing buffer to avoid needing an
// allocation and copy:
auto written = tcp->tryWrite(const_cast<char*>(data.data()), data.size());
if (written < (int)data.size())
{
data.remove_prefix(written);
auto wdata = std::make_unique<char[]>(data.size());
std::copy(data.begin(), data.end(), wdata.get());
tcp->write(std::move(wdata), data.size());
}
}
void
close_tcp_pair(quic::Stream& st, std::optional<uint64_t> /*errcode*/)
{
if (auto tcp = st.data<uvw::TCPHandle>())
{
LogTrace("Closing TCP connection");
tcp->close();
}
};
// Creates a new tcp handle that forwards incoming data/errors/closes into appropriate actions
// on the given quic stream.
void
install_stream_forwarding(uvw::TCPHandle& tcp, Stream& stream)
{
tcp.data(stream.shared_from_this());
stream.weak_data(tcp.weak_from_this());
tcp.clear(); // Clear any existing initial event handlers
tcp.on<uvw::CloseEvent>([](auto&, uvw::TCPHandle& c) {
// This fires sometime after we call `close()` to signal that the close is done.
if (auto stream = c.data<Stream>())
{
LogInfo("Local TCP connection closed, closing associated quic stream ", stream->id());
stream->close();
stream->data(nullptr);
}
c.data(nullptr);
});
tcp.on<uvw::EndEvent>([](auto&, uvw::TCPHandle& c) {
// This fires on eof, most likely because the other side of the TCP connection closed it.
LogInfo("EOF on connection to ", c.peer().ip, ":", c.peer().port);
c.close();
});
tcp.on<uvw::ErrorEvent>([](const uvw::ErrorEvent& e, uvw::TCPHandle& tcp) {
LogError(
"ErrorEvent[",
e.name(),
": ",
e.what(),
"] on connection with ",
tcp.peer().ip,
":",
tcp.peer().port,
", shutting down quic stream");
if (auto stream = tcp.data<Stream>())
{
stream->close(tunnel::ERROR_TCP);
stream->data(nullptr);
tcp.data(nullptr);
}
// tcp.closeReset();
});
tcp.on<uvw::DataEvent>(on_outgoing_data);
stream.data_callback = on_incoming_data;
stream.close_callback = close_tcp_pair;
}
// This initial data handler is responsible for pulling off the initial stream data that comes
// back, confirming that the tunnel is opened on the other end. Currently this is a null byte
// (CONNECT_INIT) but in the future we might encode additional data here (and, if that happens,
// we want this older implementation to fail).
//
// If the initial byte checks out we replace this handler with the regular stream handler (and
// forward the rest of the data to it if we got more than just the single byte).
void
initial_client_data_handler(uvw::TCPHandle& client, Stream& stream, bstring_view bdata)
{
LogTrace("initial client handler; data: ", buffer_printer{bdata});
if (bdata.empty())
return;
client.clear(); // Clear these initial event handlers: we either set up the proper ones, or
// close
if (auto b0 = bdata[0]; b0 == tunnel::CONNECT_INIT)
{
// Set up callbacks, which replaces both of these initial callbacks
client.read(); // Unfreeze (we stop() before putting into pending)
install_stream_forwarding(client, stream);
if (bdata.size() > 1)
{
bdata.remove_prefix(1);
stream.data_callback(stream, std::move(bdata));
}
LogTrace("starting client reading");
}
else
{
LogWarn(
"Remote connection returned invalid initial byte (0x",
oxenmq::to_hex(bdata.begin(), bdata.begin() + 1),
"); dropping connection");
stream.close(tunnel::ERROR_BAD_INIT);
client.close();
}
stream.io_ready();
}
// Initial close handler that gets replaced as soon as we receive a valid byte (in the above
// handler). If this gets called then it means the quic remote quic end closed before we
// established the end-to-end tunnel (for example because the remote's tunnel connection
// failed):
void
initial_client_close_handler(
uvw::TCPHandle& client, Stream& /*stream*/, std::optional<uint64_t> error_code)
{
if (error_code && *error_code == tunnel::ERROR_CONNECT)
LogDebug("Remote TCP connection failed, closing local connection");
else
LogWarn(
"Stream connection closed ",
error_code ? "with error " + std::to_string(*error_code) : "gracefully",
"; closing local TCP connection.");
auto peer = client.peer();
LogDebug("Closing connection to ", peer.ip, ":", peer.port);
client.clear();
if (error_code)
client.close();
else
client.close();
}
} // namespace
TunnelManager::TunnelManager(EndpointBase& se) : service_endpoint_{se}
{
// Cleanup callback to clear out closed tunnel connections
service_endpoint_.Loop()->call_every(500ms, timer_keepalive_, [this] {
LogTrace("Checking quic tunnels for finished connections");
for (auto ctit = client_tunnels_.begin(); ctit != client_tunnels_.end();)
{
// Clear any accepted connections that have been closed:
auto& [port, ct] = *ctit;
for (auto it = ct.conns.begin(); it != ct.conns.end();)
{
// TCP connections keep a shared_ptr to their quic::Stream while open and clear it when
// closed. (We don't want to use `.active()` here because we do deliberately temporarily
// stop the TCP connection when the quic side gets congested.
if (not *it or not(*it)->data())
{
LogDebug("Cleanup up closed outgoing tunnel on quic:", port);
it = ct.conns.erase(it);
}
else
++it;
}
// If there are not accepted connections left *and* we stopped listening for new ones then
// destroy the whole thing.
if (ct.conns.empty() and (not ct.tcp or not ct.tcp->active()))
{
LogDebug("All sockets closed on quic:", port, ", destroying tunnel data");
ctit = client_tunnels_.erase(ctit);
}
else
++ctit;
}
LogTrace("Done quic tunnel cleanup check");
});
}
void
TunnelManager::make_server()
{
// auto loop = get_loop();
server_ = std::make_unique<Server>(service_endpoint_);
server_->stream_open_callback = [this](Stream& stream, uint16_t port) -> bool {
stream.close_callback = close_tcp_pair;
auto& conn = stream.get_connection();
auto remote = service_endpoint_.GetEndpointWithConvoTag(conn.path.remote);
if (!remote)
{
LogWarn("Received new stream open from invalid/unknown convo tag, dropping stream");
return false;
}
auto lokinet_addr = var::visit([](auto&& remote) { return remote.ToString(); }, *remote);
auto tunnel_to = allow_connection(lokinet_addr, port);
if (not tunnel_to)
return false;
LogInfo("quic stream from ", lokinet_addr, " to ", port, " tunnelling to ", *tunnel_to);
auto tcp = get_loop()->resource<uvw::TCPHandle>();
auto error_handler = tcp->once<uvw::ErrorEvent>(
[&stream, to = *tunnel_to](const uvw::ErrorEvent&, uvw::TCPHandle&) {
LogWarn("Failed to connect to ", to, ", shutting down quic stream");
stream.close(tunnel::ERROR_CONNECT);
});
// As soon as we connect to the local tcp tunnel port we fire a CONNECT_INIT down the stream
// tunnel to let the other end know the connection was successful, then set up regular
// stream handling to handle any other to/from data.
tcp->once<uvw::ConnectEvent>(
[streamw = stream.weak_from_this(), error_handler = std::move(error_handler)](
const uvw::ConnectEvent&, uvw::TCPHandle& tcp) {
auto peer = tcp.peer();
auto stream = streamw.lock();
if (!stream)
{
LogWarn(
"Connected to TCP ",
peer.ip,
":",
peer.port,
" but quic stream has gone away; close/resetting local TCP connection");
tcp.close();
return;
}
LogDebug("Connected to ", peer.ip, ":", peer.port, " for quic ", stream->id());
// Set up the data stream forwarding (which also clears these initial handlers).
install_stream_forwarding(tcp, *stream);
assert(stream->used() == 0);
// Send the magic byte, and start reading from the tcp tunnel in the logic thread
stream->append_buffer(new std::byte[1]{tunnel::CONNECT_INIT}, 1);
tcp.read();
});
tcp->connect(*tunnel_to->operator const sockaddr*());
return true;
};
}
int
TunnelManager::listen(ListenHandler handler)
{
if (!handler)
throw std::logic_error{"Cannot call listen() with a null handler"};
assert(service_endpoint_.Loop()->inEventLoop());
if (not server_)
make_server();
int id = next_handler_id_++;
incoming_handlers_.emplace_hint(incoming_handlers_.end(), id, std::move(handler));
return id;
}
int
TunnelManager::listen(SockAddr addr)
{
return listen([addr](std::string_view, uint16_t p) -> std::optional<SockAddr> {
LogInfo("try accepting ", addr.getPort());
if (p == addr.getPort())
return addr;
return std::nullopt;
});
}
void
TunnelManager::forget(int id)
{
incoming_handlers_.erase(id);
}
std::optional<SockAddr>
TunnelManager::allow_connection(std::string_view lokinet_addr, uint16_t port)
{
for (auto& [id, handler] : incoming_handlers_)
{
try
{
if (auto addr = handler(lokinet_addr, port))
return addr;
}
catch (const std::exception& e)
{
LogWarn(
"Incoming quic connection from ",
lokinet_addr,
" to ",
port,
" denied via exception (",
e.what(),
")");
return std::nullopt;
}
}
LogWarn(
"Incoming quic connection from ", lokinet_addr, " to ", port, " declined by all handlers");
return std::nullopt;
}
std::shared_ptr<uvw::Loop>
TunnelManager::get_loop()
{
if (auto loop = service_endpoint_.Loop()->MaybeGetUVWLoop())
return loop;
throw std::logic_error{"TunnelManager requires a libuv-based event loop"};
}
// Finds the first unused key in `map`, starting at `start` and wrapping back to 0 if we hit the
// end. Requires an unsigned int type for the key. Requires nullopt if the map is completely
// full, otherwise returns the free key.
template <
typename K,
typename V,
typename = std::enable_if_t<std::is_integral_v<K> && std::is_unsigned_v<K>>>
static std::optional<K>
find_unused_key(std::map<K, V>& map, K start)
{
if (map.size() == std::numeric_limits<K>::max())
return std::nullopt; // The map is completely full
[[maybe_unused]] bool from_zero = (start == K{0});
// Start at the first key >= start, then walk 1-by-1 (incrementing start) until we find a
// strictly > key, which means we've found a hole we can use
auto it = map.lower_bound(start);
if (it == map.end())
return start;
for (; it != map.end(); ++it, ++start)
if (it->first != start)
return start;
if (start != 0) // `start` didn't wrap which means we found an empty slot
return start;
assert(!from_zero); // There *must* be a free slot somewhere in [0, max] (otherwise the map
// would be completely full and we'd have returned nullopt).
return find_unused_key(map, K{0});
}
// Wrap common tasks and cleanup that we need to do from multiple places while establishing a
// tunnel
bool
TunnelManager::continue_connecting(
uint16_t pseudo_port, bool step_success, std::string_view step_name, std::string_view addr)
{
assert(service_endpoint_.Loop()->inEventLoop());
auto it = client_tunnels_.find(pseudo_port);
if (it == client_tunnels_.end())
{
LogDebug("QUIC tunnel to ", addr, " closed before ", step_name, " finished");
return false;
}
if (!step_success)
{
LogWarn("QUIC tunnel to ", addr, " failed during ", step_name, "; aborting tunnel");
it->second.tcp->close();
if (it->second.open_cb)
it->second.open_cb(false);
client_tunnels_.erase(it);
}
return step_success;
}
std::pair<SockAddr, uint16_t>
TunnelManager::open(
std::string_view remote_address, uint16_t port, OpenCallback on_open, SockAddr bind_addr)
{
std::string remote_addr = lowercase_ascii_string(std::string{remote_address});
std::pair<SockAddr, uint16_t> result;
auto& [saddr, pport] = result;
auto maybe_remote = service::ParseAddress(remote_addr);
if (!maybe_remote)
{
if (not service::NameIsValid(remote_addr))
throw std::invalid_argument{"Invalid remote lokinet name/address"};
// Otherwise it's a valid ONS name, so we'll initiate an ONS lookup below
}
// Open the TCP tunnel right away; it will just block new incoming connections until the quic
// connection is established, but this still allows the caller to connect right away and queue
// an initial request (rather than having to wait via a callback before connecting). It also
// makes sure we can actually listen on the given address before we go ahead with establishing
// the quic connection.
auto tcp_tunnel = get_loop()->resource<uvw::TCPHandle>();
const char* failed = nullptr;
auto err_handler =
tcp_tunnel->once<uvw::ErrorEvent>([&failed](auto& evt, auto&) { failed = evt.what(); });
tcp_tunnel->bind(*bind_addr.operator const sockaddr*());
tcp_tunnel->on<uvw::ListenEvent>([this](const uvw::ListenEvent&, uvw::TCPHandle& tcp_tunnel) {
auto client = tcp_tunnel.loop().resource<uvw::TCPHandle>();
tcp_tunnel.accept(*client);
// Freeze the connection (after accepting) because we may need to stall it until a stream
// becomes available; flush_pending_incoming will unfreeze it.
client->stop();
auto pport = tcp_tunnel.data<uint16_t>();
if (pport)
{
if (auto it = client_tunnels_.find(*pport); it != client_tunnels_.end())
{
it->second.pending_incoming.emplace(std::move(client));
flush_pending_incoming(it->second);
return;
}
tcp_tunnel.data(nullptr);
}
client->close();
});
tcp_tunnel->listen();
tcp_tunnel->erase(err_handler);
if (failed)
{
tcp_tunnel->close();
throw std::runtime_error{
"Failed to bind/listen local TCP tunnel socket on " + bind_addr.toString() + ": "
+ failed};
}
auto bound = tcp_tunnel->sock();
saddr = SockAddr{bound.ip, static_cast<uint16_t>(bound.port)};
// Find the first unused psuedo-port value starting from next_pseudo_port_.
if (auto p = find_unused_key(client_tunnels_, next_pseudo_port_))
pport = *p;
else
throw std::runtime_error{
"Unable to open an outgoing quic connection: too many existing connections"};
(next_pseudo_port_ = pport)++;
LogInfo("Bound TCP tunnel ", saddr, " for quic client :", pport);
// We are emplacing into client_tunnels_ here: beyond this point we must not throw until we
// return (or if we do, make sure we remove this row from client_tunnels_ first).
assert(client_tunnels_.count(pport) == 0);
auto& ct = client_tunnels_[pport];
ct.open_cb = std::move(on_open);
ct.tcp = std::move(tcp_tunnel);
// We use this pport shared_ptr value on the listening tcp socket both to hand to pport into the
// accept handler, and to let the accept handler know that `this` is still safe to use.
ct.tcp->data(std::make_shared<uint16_t>(pport));
auto after_path = [this, port, pport = pport, remote_addr](auto maybe_convo) {
if (not continue_connecting(pport, (bool)maybe_convo, "path build", remote_addr))
return;
SockAddr dest{maybe_convo->ToV6()};
dest.setPort(port);
make_client(dest, *client_tunnels_.find(pport));
};
if (!maybe_remote)
{
// We were given an ONS address, so it's a two-step process: first we resolve the ONS name,
// then we have to build a path to that address.
service_endpoint_.LookupNameAsync(
remote_addr,
[this,
after_path = std::move(after_path),
pport = pport,
remote_addr = std::move(remote_addr)](auto maybe_remote) {
if (not continue_connecting(
pport, (bool)maybe_remote, "endpoint ONS lookup", remote_addr))
return;
service_endpoint_.EnsurePathTo(*maybe_remote, after_path, open_timeout);
});
return result;
}
auto& remote = *maybe_remote;
// See if we have an existing convo tag we can use to start things immediately
if (auto maybe_convo = service_endpoint_.GetBestConvoTagFor(remote))
after_path(maybe_convo);
else
service_endpoint_.EnsurePathTo(remote, after_path, open_timeout);
return result;
}
void
TunnelManager::close(int id)
{
if (auto it = client_tunnels_.find(id); it != client_tunnels_.end())
{
it->second.tcp->close();
it->second.tcp->data(nullptr);
it->second.tcp.reset();
}
}
TunnelManager::ClientTunnel::~ClientTunnel()
{
if (tcp)
{
tcp->close();
tcp->data(nullptr);
tcp.reset();
}
for (auto& conn : conns)
conn->close();
conns.clear();
while (not pending_incoming.empty())
{
if (auto tcp = pending_incoming.front().lock())
{
tcp->clear();
tcp->close();
}
pending_incoming.pop();
}
}
void
TunnelManager::make_client(const SockAddr& remote, std::pair<const uint16_t, ClientTunnel>& row)
{
assert(remote.getPort() > 0);
auto& [pport, tunnel] = row;
assert(not tunnel.client);
tunnel.client = std::make_unique<Client>(service_endpoint_, remote, pport);
auto conn = tunnel.client->get_connection();
conn->on_stream_available = [this, id = row.first](Connection&) {
LogDebug("QUIC connection :", id, " established; streams now available");
if (auto it = client_tunnels_.find(id); it != client_tunnels_.end())
flush_pending_incoming(it->second);
};
}
void
TunnelManager::flush_pending_incoming(ClientTunnel& ct)
{
if (!ct.client)
return; // Happens if we're still waiting for a path to build
if (not ct.client->get_connection())
return;
auto& conn = *ct.client->get_connection();
int available = conn.get_streams_available();
while (available > 0 and not ct.pending_incoming.empty())
{
auto tcp_client = ct.pending_incoming.front().lock();
ct.pending_incoming.pop();
if (not tcp_client)
continue;
try
{
auto str = conn.open_stream(
[tcp_client](auto&&... args) {
initial_client_data_handler(*tcp_client, std::forward<decltype(args)>(args)...);
},
[tcp_client](auto&&... args) {
initial_client_close_handler(*tcp_client, std::forward<decltype(args)>(args)...);
});
available--;
}
catch (const std::exception& e)
{
LogWarn("Opening quic stream failed: ", e.what());
tcp_client->close();
}
LogTrace("Set up new stream");
conn.io_ready();
}
}
void
TunnelManager::receive_packet(const service::ConvoTag& tag, const llarp_buffer_t& buf)
{
if (buf.sz <= 4)
{
LogWarn("invalid quic packet: packet size (", buf.sz, ") too small");
return;
}
auto type = static_cast<std::byte>(buf.base[0]);
nuint16_t pseudo_port_n;
std::memcpy(&pseudo_port_n.n, &buf.base[1], 2);
uint16_t pseudo_port = ToHost(pseudo_port_n).h;
auto ecn = static_cast<uint8_t>(buf.base[3]);
bstring_view data{reinterpret_cast<const std::byte*>(&buf.base[4]), buf.sz - 4};
SockAddr remote{tag.ToV6()};
quic::Endpoint* ep = nullptr;
if (type == CLIENT_TO_SERVER)
{
LogTrace("packet is client-to-server from client pport ", pseudo_port);
// Client-to-server: the header port is the return port
remote.setPort(pseudo_port);
if (!server_)
{
LogWarn("Dropping incoming quic packet to server: no listeners");
return;
}
ep = server_.get();
}
else if (type == SERVER_TO_CLIENT)
{
LogTrace("packet is server-to-client to client pport ", pseudo_port);
// Server-to-client: the header port tells us which client tunnel this is going to
if (auto it = client_tunnels_.find(pseudo_port); it != client_tunnels_.end())
ep = it->second.client.get();
if (not ep)
{
LogWarn("Incoming quic packet to invalid/closed client; dropping");
return;
}
// The server doesn't send back the port because we already know it 1-to-1 from our outgoing
// connection.
if (auto conn = static_cast<quic::Client&>(*ep).get_connection())
{
remote.setPort(conn->path.remote.port());
LogTrace("remote port is ", remote.getPort());
}
else
{
LogWarn("Incoming quic to a quic::Client without an active quic::Connection; dropping");
return;
}
}
else
{
LogWarn("Invalid incoming quic packet type ", type, "; dropping packet");
return;
}
ep->receive_packet(remote, ecn, data);
}
} // namespace llarp::quic