lokinet/llarp/net/ip.cpp
2019-06-18 09:10:44 -04:00

436 lines
13 KiB
C++

#include <net/ip.hpp>
#include <util/buffer.hpp>
#include <util/endian.hpp>
#include <util/mem.hpp>
#ifndef _WIN32
#include <netinet/in.h>
#endif
#include <algorithm>
#include <map>
namespace llarp
{
namespace net
{
inline static uint32_t *
in6_uint32_ptr(in6_addr &addr)
{
return (uint32_t *)addr.s6_addr;
}
inline static const uint32_t *
in6_uint32_ptr(const in6_addr &addr)
{
return (uint32_t *)addr.s6_addr;
}
huint128_t
IPPacket::In6ToHUInt(in6_addr addr)
{
uint32_t *ptr = in6_uint32_ptr(addr);
#if __BYTE_ORDER == __BIG_ENDIAN
return huint128_t{ptr[0]} | (huint128_t{ptr[1]} << 32)
| (huint128_t{ptr[2]} << 64) | (huint128_t{ptr[3]} << 96);
#else
return huint128_t{ntohl(ptr[3])} | (huint128_t{ntohl(ptr[2])} << 32)
| (huint128_t{ntohl(ptr[1])} << 64)
| (huint128_t{ntohl(ptr[0])} << 96);
#endif
}
in6_addr
IPPacket::HUIntToIn6(huint128_t x)
{
in6_addr addr;
auto i = ntoh128(x.h);
memcpy(&addr, &i, 16);
return addr;
}
huint128_t
IPPacket::ExpandV4(huint32_t i)
{
huint128_t ff = {0xff};
huint128_t expanded{i.h};
return (ff << 40) | (ff << 32) | expanded;
}
huint32_t
IPPacket::TruncateV6(huint128_t i)
{
huint32_t ret = {0};
ret.h = (uint32_t)(i.h & (0x00000000ffffffffUL));
return ret;
}
huint128_t
IPPacket::srcv6() const
{
return In6ToHUInt(HeaderV6()->srcaddr);
}
huint128_t
IPPacket::dstv6() const
{
return In6ToHUInt(HeaderV6()->dstaddr);
}
bool
IPPacket::Load(const llarp_buffer_t &pkt)
{
if(pkt.sz > sizeof(buf))
return false;
sz = pkt.sz;
memcpy(buf, pkt.base, sz);
return true;
}
llarp_buffer_t
IPPacket::ConstBuffer() const
{
return {buf, sz};
}
llarp_buffer_t
IPPacket::Buffer()
{
return {buf, sz};
}
huint32_t
IPPacket::srcv4() const
{
return huint32_t{ntohl(Header()->saddr)};
}
huint32_t
IPPacket::dstv4() const
{
return huint32_t{ntohl(Header()->daddr)};
}
#if 0
static uint32_t
ipchksum_pseudoIPv4(nuint32_t src_ip, nuint32_t dst_ip, uint8_t proto,
uint16_t innerlen)
{
#define IPCS(x) ((uint32_t)(x & 0xFFff) + (uint32_t)(x >> 16))
uint32_t sum = IPCS(src_ip.n) + IPCS(dst_ip.n) + (uint32_t)proto
+ (uint32_t)htons(innerlen);
#undef IPCS
return sum;
}
static uint16_t
ipchksum(const byte_t *buf, size_t sz, uint32_t sum = 0)
{
while(sz > 1)
{
sum += *(const uint16_t *)buf;
sz -= sizeof(uint16_t);
buf += sizeof(uint16_t);
}
if(sz != 0)
{
uint16_t x = 0;
*(byte_t *)&x = *(const byte_t *)buf;
sum += x;
}
// only need to do it 2 times to be sure
// proof: 0xFFff + 0xFFff = 0x1FFfe -> 0xFFff
sum = (sum & 0xFFff) + (sum >> 16);
sum += sum >> 16;
return uint16_t((~sum) & 0xFFff);
}
#endif
#define ADD32CS(x) ((uint32_t)(x & 0xFFff) + (uint32_t)(x >> 16))
#define SUB32CS(x) ((uint32_t)((~x) & 0xFFff) + (uint32_t)((~x) >> 16))
static nuint16_t
deltaIPv4Checksum(nuint16_t old_sum, nuint32_t old_src_ip,
nuint32_t old_dst_ip, nuint32_t new_src_ip,
nuint32_t new_dst_ip)
{
uint32_t sum = uint32_t(old_sum.n) + ADD32CS(old_src_ip.n)
+ ADD32CS(old_dst_ip.n) + SUB32CS(new_src_ip.n)
+ SUB32CS(new_dst_ip.n);
// only need to do it 2 times to be sure
// proof: 0xFFff + 0xFFff = 0x1FFfe -> 0xFFff
sum = (sum & 0xFFff) + (sum >> 16);
sum += sum >> 16;
return nuint16_t{uint16_t(sum & 0xFFff)};
}
static nuint16_t
deltaIPv6Checksum(nuint16_t old_sum, const uint32_t old_src_ip[4],
const uint32_t old_dst_ip[4],
const uint32_t new_src_ip[4],
const uint32_t new_dst_ip[4])
{
/* we don't actually care in what way integers are arranged in memory
* internally */
/* as long as uint16 pairs are swapped in correct direction, result will
* be correct (assuming there are no gaps in structure) */
/* we represent 128bit stuff there as 4 32bit ints, that should be more or
* less correct */
/* we could do 64bit ints too but then we couldn't reuse 32bit macros and
* that'd suck for 32bit cpus */
#define ADDN128CS(x) \
(ADD32CS(x[0]) + ADD32CS(x[1]) + ADD32CS(x[2]) + ADD32CS(x[3]))
#define SUBN128CS(x) \
(SUB32CS(x[0]) + SUB32CS(x[1]) + SUB32CS(x[2]) + SUB32CS(x[3]))
uint32_t sum = uint32_t(old_sum.n) + ADDN128CS(old_src_ip)
+ ADDN128CS(old_dst_ip) + SUBN128CS(new_src_ip)
+ SUBN128CS(new_dst_ip);
#undef ADDN128CS
#undef SUBN128CS
// only need to do it 2 times to be sure
// proof: 0xFFff + 0xFFff = 0x1FFfe -> 0xFFff
sum = (sum & 0xFFff) + (sum >> 16);
sum += sum >> 16;
return nuint16_t{uint16_t(sum & 0xFFff)};
}
#undef ADD32CS
#undef SUB32CS
static void
deltaChecksumIPv4TCP(byte_t *pld, size_t psz, size_t fragoff,
size_t chksumoff, nuint32_t oSrcIP, nuint32_t oDstIP,
nuint32_t nSrcIP, nuint32_t nDstIP)
{
if(fragoff > chksumoff || psz < chksumoff - fragoff + 2)
return;
auto check = (nuint16_t *)(pld + chksumoff - fragoff);
*check = deltaIPv4Checksum(*check, oSrcIP, oDstIP, nSrcIP, nDstIP);
// usually, TCP checksum field cannot be 0xFFff,
// because one's complement addition cannot result in 0x0000,
// and there's inversion in the end;
// emulate that.
if(check->n == 0xFFff)
check->n = 0x0000;
}
static void
deltaChecksumIPv6TCP(byte_t *pld, size_t psz, size_t fragoff,
size_t chksumoff, const uint32_t oSrcIP[4],
const uint32_t oDstIP[4], const uint32_t nSrcIP[4],
const uint32_t nDstIP[4])
{
if(fragoff > chksumoff || psz < chksumoff - fragoff + 2)
return;
auto check = (nuint16_t *)(pld + chksumoff - fragoff);
*check = deltaIPv6Checksum(*check, oSrcIP, oDstIP, nSrcIP, nDstIP);
// usually, TCP checksum field cannot be 0xFFff,
// because one's complement addition cannot result in 0x0000,
// and there's inversion in the end;
// emulate that.
if(check->n == 0xFFff)
check->n = 0x0000;
}
static void
deltaChecksumIPv4UDP(byte_t *pld, size_t psz, size_t fragoff,
nuint32_t oSrcIP, nuint32_t oDstIP, nuint32_t nSrcIP,
nuint32_t nDstIP)
{
if(fragoff > 6 || psz < 6 + 2)
return;
auto check = (nuint16_t *)(pld + 6);
if(check->n == 0x0000)
return; // 0 is used to indicate "no checksum", don't change
*check = deltaIPv4Checksum(*check, oSrcIP, oDstIP, nSrcIP, nDstIP);
// 0 is used to indicate "no checksum"
// 0xFFff and 0 are equivalent in one's complement math
// 0xFFff + 1 = 0x10000 -> 0x0001 (same as 0 + 1)
// infact it's impossible to get 0 with such addition,
// when starting from non-0 value.
// inside deltachksum we don't invert so it's safe to skip check there
// if(check->n == 0x0000)
// check->n = 0xFFff;
}
static void
deltaChecksumIPv6UDP(byte_t *pld, size_t psz, size_t fragoff,
const uint32_t oSrcIP[4], const uint32_t oDstIP[4],
const uint32_t nSrcIP[4], const uint32_t nDstIP[4])
{
if(fragoff > 6 || psz < 6 + 2)
return;
auto check = (nuint16_t *)(pld + 6);
// 0 is used to indicate "no checksum", don't change
// even tho this shouldn't happen for IPv6, handle it properly
// we actually should drop/log 0-checksum packets per spec
// but that should be done at upper level than this function
// it's better to do correct thing there regardless
// XXX or maybe we should change this function to be able to return error?
// either way that's not a priority
if(check->n == 0x0000)
return;
*check = deltaIPv6Checksum(*check, oSrcIP, oDstIP, nSrcIP, nDstIP);
// 0 is used to indicate "no checksum"
// 0xFFff and 0 are equivalent in one's complement math
// 0xFFff + 1 = 0x10000 -> 0x0001 (same as 0 + 1)
// infact it's impossible to get 0 with such addition,
// when starting from non-0 value.
// inside deltachksum we don't invert so it's safe to skip check there
// if(check->n == 0x0000)
// check->n = 0xFFff;
}
void
IPPacket::UpdateIPv4Address(nuint32_t nSrcIP, nuint32_t nDstIP)
{
llarp::LogDebug("set src=", nSrcIP, " dst=", nDstIP);
auto hdr = Header();
auto oSrcIP = nuint32_t{hdr->saddr};
auto oDstIP = nuint32_t{hdr->daddr};
// L4 checksum
auto ihs = size_t(hdr->ihl * 4);
if(ihs <= sz)
{
auto pld = buf + ihs;
auto psz = sz - ihs;
auto fragoff = size_t((ntohs(hdr->frag_off) & 0x1Fff) * 8);
switch(hdr->protocol)
{
case 6: // TCP
deltaChecksumIPv4TCP(pld, psz, fragoff, 16, oSrcIP, oDstIP, nSrcIP,
nDstIP);
break;
case 17: // UDP
case 136: // UDP-Lite - same checksum place, same 0->0xFFff condition
deltaChecksumIPv4UDP(pld, psz, fragoff, oSrcIP, oDstIP, nSrcIP,
nDstIP);
break;
case 33: // DCCP
deltaChecksumIPv4TCP(pld, psz, fragoff, 6, oSrcIP, oDstIP, nSrcIP,
nDstIP);
break;
}
}
// IPv4 checksum
auto v4chk = (nuint16_t *)&(hdr->check);
*v4chk = deltaIPv4Checksum(*v4chk, oSrcIP, oDstIP, nSrcIP, nDstIP);
// write new IP addresses
hdr->saddr = nSrcIP.n;
hdr->daddr = nDstIP.n;
}
void
IPPacket::UpdateIPv6Address(huint128_t src, huint128_t dst)
{
const size_t ihs = 4 + 4 + 16 + 16;
// XXX should've been checked at upper level?
if(sz <= ihs)
return;
auto hdr = HeaderV6();
const auto oldSrcIP = hdr->srcaddr;
const auto oldDstIP = hdr->dstaddr;
const uint32_t *oSrcIP = in6_uint32_ptr(oldSrcIP);
const uint32_t *oDstIP = in6_uint32_ptr(oldDstIP);
// IPv6 address
hdr->srcaddr = HUIntToIn6(src);
hdr->dstaddr = HUIntToIn6(dst);
const uint32_t *nSrcIP = in6_uint32_ptr(hdr->srcaddr);
const uint32_t *nDstIP = in6_uint32_ptr(hdr->dstaddr);
// TODO IPv6 header options
auto pld = buf + ihs;
auto psz = sz - ihs;
size_t fragoff = 0;
auto nextproto = hdr->proto;
for(;;)
{
switch(nextproto)
{
case 0: // Hop-by-Hop Options
case 43: // Routing Header
case 60: // Destination Options
{
nextproto = pld[0];
auto addlen = (size_t(pld[1]) + 1) * 8;
if(psz < addlen)
return;
pld += addlen;
psz -= addlen;
break;
}
case 44: // Fragment Header
/*
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Reserved | Fragment Offset |Res|M|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
nextproto = pld[0];
fragoff = (uint16_t(pld[2]) << 8) | (uint16_t(pld[3]) & 0xFC);
if(psz < 8)
return;
pld += 8;
psz -= 8;
// jump straight to payload processing
if(fragoff != 0)
goto endprotohdrs;
break;
default:
goto endprotohdrs;
}
}
endprotohdrs:
switch(nextproto)
{
case 6: // TCP
deltaChecksumIPv6TCP(pld, psz, fragoff, 16, oSrcIP, oDstIP, nSrcIP,
nDstIP);
break;
case 17: // UDP
case 136: // UDP-Lite - same checksum place, same 0->0xFFff condition
deltaChecksumIPv6UDP(pld, psz, fragoff, oSrcIP, oDstIP, nSrcIP,
nDstIP);
break;
case 33: // DCCP
deltaChecksumIPv6TCP(pld, psz, fragoff, 6, oSrcIP, oDstIP, nSrcIP,
nDstIP);
break;
}
}
} // namespace net
} // namespace llarp