lokinet/llarp/ev.hpp
2018-09-16 08:25:17 -04:00

201 lines
3.8 KiB
C++

#ifndef LLARP_EV_HPP
#define LLARP_EV_HPP
#include <llarp/ev.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif
#include <llarp/buffer.h>
#include <list>
#include <llarp/codel.hpp>
#include <vector>
#ifndef MAX_WRITE_QUEUE_SIZE
#define MAX_WRITE_QUEUE_SIZE 1024
#endif
#ifndef EV_READ_BUF_SZ
#define EV_READ_BUF_SZ (4 * 1024)
#endif
namespace llarp
{
struct ev_io
{
#ifndef _WIN32
int fd;
ev_io(int f) : fd(f), m_writeq("writequeue"){};
#else
SOCKET fd;
// the unique completion key that helps us to
// identify the object instance for which we receive data
// Here, we'll use the address of the udp_listener instance, converted to
// its literal int/int64 representation.
ULONG_PTR listener_id = 0;
ev_io(SOCKET f) : fd(f), m_writeq("writequeue"){};
#endif
virtual int
read(void* buf, size_t sz) = 0;
virtual int
sendto(const sockaddr* dst, const void* data, size_t sz) = 0;
/// used for tun interface
bool
queue_write(const void* data, size_t sz)
{
return write(fd, data, sz) != -1;
}
/// called in event loop when fd is ready for writing
/// requeues anything not written
/// this assumes fd is set to non blocking
virtual void
flush_write()
{
m_writeq.Process([&](WriteBuffer& buffer) {
// todo: wtf???
#ifndef _WIN32
write(fd, buffer.buf, buffer.bufsz);
// if we would block we save the entries for later
// discard entry
#else
// writefile
#endif
});
/// reset errno
errno = 0;
}
struct WriteBuffer
{
llarp_time_t timestamp = 0;
size_t bufsz;
byte_t buf[1500];
WriteBuffer() = default;
WriteBuffer(const void* ptr, size_t sz)
{
if(sz <= sizeof(buf))
{
bufsz = sz;
memcpy(buf, ptr, bufsz);
}
else
bufsz = 0;
}
struct GetTime
{
llarp_time_t
operator()(const WriteBuffer& w) const
{
return w.timestamp;
}
};
struct PutTime
{
void
operator()(WriteBuffer& w) const
{
w.timestamp = llarp_time_now_ms();
}
};
struct Compare
{
bool
operator()(const WriteBuffer& left, const WriteBuffer& right) const
{
return left.timestamp < right.timestamp;
}
};
};
llarp::util::CoDelQueue< WriteBuffer, WriteBuffer::GetTime,
WriteBuffer::PutTime, WriteBuffer::Compare,
llarp::util::NullMutex, llarp::util::NullLock >
m_writeq;
virtual ~ev_io()
{
#ifndef _WIN32
::close(fd);
#else
closesocket(fd);
#endif
};
};
}; // namespace llarp
struct llarp_ev_loop
{
byte_t readbuf[EV_READ_BUF_SZ];
virtual bool
init() = 0;
virtual int
run() = 0;
virtual int
tick(int ms) = 0;
virtual void
stop() = 0;
bool
udp_listen(llarp_udp_io* l, const sockaddr* src)
{
auto ev = create_udp(l, src);
if(ev)
{
l->fd = ev->fd;
}
return ev && add_ev(ev, false);
}
virtual llarp::ev_io*
create_udp(llarp_udp_io* l, const sockaddr* src) = 0;
virtual bool
udp_close(llarp_udp_io* l) = 0;
virtual bool
close_ev(llarp::ev_io* ev) = 0;
virtual llarp::ev_io*
create_tun(llarp_tun_io* tun) = 0;
virtual bool
add_ev(llarp::ev_io* ev, bool write = false) = 0;
virtual bool
running() const = 0;
virtual ~llarp_ev_loop(){};
std::list< llarp_udp_io* > udp_listeners;
std::list< llarp_tun_io* > tun_listeners;
void
tick_listeners()
{
for(auto& l : udp_listeners)
if(l->tick)
l->tick(l);
for(auto& l : tun_listeners)
{
if(l->tick)
l->tick(l);
if(l->before_write)
l->before_write(l);
static_cast< llarp::ev_io* >(l->impl)->flush_write();
}
}
};
#endif