lokinet/llarp/net/ip_range.hpp
Jason Rhinelander 36792d4337
Fix multi-field < ordering
Lots and lots of places in the code had broken < operators because they
are returning something like:

    foo < other.foo or bar < other.bar;

but this breaks both the strict weak ordering requirements that are
required for the "Compare" requirement for things like
std::map/set/priority_queue.

For example:

    a = {.foo=1, .bar=3}
    b = {.foo=3, .bar=1}

does not have an ordering over a and b (both `a < b` and `b < a` are
satisfied at the same time).

This needs to be instead something like:

    foo < other.foo or (foo == other.foo and bar < other.bar)

but that's a bit clunkier, and it is easier to use std::tie for tuple's
built-in < comparison which does the right thing:

    std::tie(foo, bar) < std::tie(other.foo, other.bar)

(Initially I noticed this in SockAddr/sockaddr_in6, but upon further
investigation this extends to the major of multi-field `operator<`'s.)

This fixes it by using std::tie (or something similar) everywhere we are
doing multi-field inequalities.
2022-10-13 16:29:13 -03:00

174 lines
4.0 KiB
C++

#pragma once
#include "ip.hpp"
#include "net_bits.hpp"
#include <llarp/util/bits.hpp>
#include <llarp/util/buffer.hpp>
#include <llarp/util/types.hpp>
#include <list>
#include <optional>
#include <string>
namespace llarp
{
struct IPRange
{
using Addr_t = huint128_t;
huint128_t addr = {0};
huint128_t netmask_bits = {0};
constexpr IPRange()
{}
constexpr IPRange(huint128_t address, huint128_t netmask)
: addr{std::move(address)}, netmask_bits{std::move(netmask)}
{}
static constexpr IPRange
V4MappedRange()
{
return IPRange{huint128_t{0x0000'ffff'0000'0000UL}, netmask_ipv6_bits(96)};
}
static constexpr IPRange
FromIPv4(byte_t a, byte_t b, byte_t c, byte_t d, byte_t mask)
{
return IPRange{net::ExpandV4(ipaddr_ipv4_bits(a, b, c, d)), netmask_ipv6_bits(mask + 96)};
}
static inline IPRange
FromIPv4(net::ipv4addr_t addr, net::ipv4addr_t netmask)
{
return IPRange{
net::ExpandV4(ToHost(addr)), netmask_ipv6_bits(bits::count_bits(netmask) + 96)};
}
/// return true if this iprange is in the IPv4 mapping range for containing ipv4 addresses
constexpr bool
IsV4() const
{
return V4MappedRange().Contains(addr);
}
/// get address family
constexpr int
Family() const
{
if (IsV4())
return AF_INET;
return AF_INET6;
}
/// return the number of bits set in the hostmask
constexpr int
HostmaskBits() const
{
if (IsV4())
{
return bits::count_bits(net::TruncateV6(netmask_bits));
}
return bits::count_bits(netmask_bits);
}
/// return true if our range and other intersect
constexpr bool
operator*(const IPRange& other) const
{
return Contains(other) or other.Contains(*this);
}
/// return true if the other range is inside our range
constexpr bool
Contains(const IPRange& other) const
{
return Contains(other.addr) and Contains(other.HighestAddr());
}
/// return true if ip is contained in this ip range
constexpr bool
Contains(const Addr_t& ip) const
{
return (addr & netmask_bits) == (ip & netmask_bits);
}
/// return true if we are a ipv4 range and contains this ip
constexpr bool
Contains(const huint32_t& ip) const
{
if (not IsV4())
return false;
return Contains(net::ExpandV4(ip));
}
inline bool
Contains(const net::ipaddr_t& ip) const
{
return var::visit([this](auto&& ip) { return Contains(ToHost(ip)); }, ip);
}
/// get the highest address on this range
constexpr huint128_t
HighestAddr() const
{
return (addr & netmask_bits) + (huint128_t{1} << (128 - bits::count_bits_128(netmask_bits.h)))
- huint128_t{1};
}
bool
operator<(const IPRange& other) const
{
auto maskedA = addr & netmask_bits, maskedB = other.addr & other.netmask_bits;
return std::tie(maskedA, netmask_bits) < std::tie(maskedB, other.netmask_bits);
}
bool
operator==(const IPRange& other) const
{
return addr == other.addr and netmask_bits == other.netmask_bits;
}
std::string
ToString() const
{
return BaseAddressString() + "/" + std::to_string(HostmaskBits());
}
std::string
BaseAddressString() const;
std::string
NetmaskString() const;
bool
FromString(std::string str);
bool
BEncode(llarp_buffer_t* buf) const;
bool
BDecode(llarp_buffer_t* buf);
/// Finds a free private use range not overlapping the given ranges.
static std::optional<IPRange>
FindPrivateRange(const std::list<IPRange>& excluding);
};
template <>
constexpr inline bool IsToStringFormattable<IPRange> = true;
} // namespace llarp
namespace std
{
template <>
struct hash<llarp::IPRange>
{
size_t
operator()(const llarp::IPRange& range) const
{
const auto str = range.ToString();
return std::hash<std::string>{}(str);
}
};
} // namespace std