mirror of
https://github.com/oxen-io/lokinet.git
synced 2024-11-09 13:10:25 +00:00
915 lines
30 KiB
C++
915 lines
30 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// This file contains string processing functions related to
|
|
// numeric values.
|
|
|
|
#include "absl/strings/numbers.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cfloat> // for DBL_DIG and FLT_DIG
|
|
#include <cmath> // for HUGE_VAL
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
#include "absl/base/internal/bits.h"
|
|
#include "absl/base/internal/raw_logging.h"
|
|
#include "absl/strings/ascii.h"
|
|
#include "absl/strings/charconv.h"
|
|
#include "absl/strings/internal/memutil.h"
|
|
#include "absl/strings/str_cat.h"
|
|
|
|
namespace absl {
|
|
inline namespace lts_2018_12_18 {
|
|
|
|
bool SimpleAtof(absl::string_view str, float* value) {
|
|
*value = 0.0;
|
|
str = StripAsciiWhitespace(str);
|
|
if (!str.empty() && str[0] == '+') {
|
|
str.remove_prefix(1);
|
|
}
|
|
auto result = absl::from_chars(str.data(), str.data() + str.size(), *value);
|
|
if (result.ec == std::errc::invalid_argument) {
|
|
return false;
|
|
}
|
|
if (result.ptr != str.data() + str.size()) {
|
|
// not all non-whitespace characters consumed
|
|
return false;
|
|
}
|
|
// from_chars() with DR 3801's current wording will return max() on
|
|
// overflow. SimpleAtof returns infinity instead.
|
|
if (result.ec == std::errc::result_out_of_range) {
|
|
if (*value > 1.0) {
|
|
*value = std::numeric_limits<float>::infinity();
|
|
} else if (*value < -1.0) {
|
|
*value = -std::numeric_limits<float>::infinity();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool SimpleAtod(absl::string_view str, double* value) {
|
|
*value = 0.0;
|
|
str = StripAsciiWhitespace(str);
|
|
if (!str.empty() && str[0] == '+') {
|
|
str.remove_prefix(1);
|
|
}
|
|
auto result = absl::from_chars(str.data(), str.data() + str.size(), *value);
|
|
if (result.ec == std::errc::invalid_argument) {
|
|
return false;
|
|
}
|
|
if (result.ptr != str.data() + str.size()) {
|
|
// not all non-whitespace characters consumed
|
|
return false;
|
|
}
|
|
// from_chars() with DR 3801's current wording will return max() on
|
|
// overflow. SimpleAtod returns infinity instead.
|
|
if (result.ec == std::errc::result_out_of_range) {
|
|
if (*value > 1.0) {
|
|
*value = std::numeric_limits<double>::infinity();
|
|
} else if (*value < -1.0) {
|
|
*value = -std::numeric_limits<double>::infinity();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// TODO(rogeeff): replace with the real released thing once we figure out what
|
|
// it is.
|
|
inline bool CaseEqual(absl::string_view piece1, absl::string_view piece2) {
|
|
return (piece1.size() == piece2.size() &&
|
|
0 == strings_internal::memcasecmp(piece1.data(), piece2.data(),
|
|
piece1.size()));
|
|
}
|
|
|
|
// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
|
|
// range 0 <= i < 100, and buf must have space for two characters. Example:
|
|
// char buf[2];
|
|
// PutTwoDigits(42, buf);
|
|
// // buf[0] == '4'
|
|
// // buf[1] == '2'
|
|
inline void PutTwoDigits(size_t i, char* buf) {
|
|
static const char two_ASCII_digits[100][2] = {
|
|
{'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'},
|
|
{'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'},
|
|
{'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'},
|
|
{'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'},
|
|
{'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'},
|
|
{'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
|
|
{'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'},
|
|
{'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'},
|
|
{'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'},
|
|
{'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'},
|
|
{'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'},
|
|
{'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
|
|
{'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'},
|
|
{'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'},
|
|
{'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'},
|
|
{'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'},
|
|
{'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'},
|
|
{'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
|
|
{'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'},
|
|
{'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}
|
|
};
|
|
assert(i < 100);
|
|
memcpy(buf, two_ASCII_digits[i], 2);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool SimpleAtob(absl::string_view str, bool* value) {
|
|
ABSL_RAW_CHECK(value != nullptr, "Output pointer must not be nullptr.");
|
|
if (CaseEqual(str, "true") || CaseEqual(str, "t") ||
|
|
CaseEqual(str, "yes") || CaseEqual(str, "y") ||
|
|
CaseEqual(str, "1")) {
|
|
*value = true;
|
|
return true;
|
|
}
|
|
if (CaseEqual(str, "false") || CaseEqual(str, "f") ||
|
|
CaseEqual(str, "no") || CaseEqual(str, "n") ||
|
|
CaseEqual(str, "0")) {
|
|
*value = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// FastIntToBuffer() overloads
|
|
//
|
|
// Like the Fast*ToBuffer() functions above, these are intended for speed.
|
|
// Unlike the Fast*ToBuffer() functions, however, these functions write
|
|
// their output to the beginning of the buffer. The caller is responsible
|
|
// for ensuring that the buffer has enough space to hold the output.
|
|
//
|
|
// Returns a pointer to the end of the string (i.e. the null character
|
|
// terminating the string).
|
|
// ----------------------------------------------------------------------
|
|
|
|
namespace {
|
|
|
|
// Used to optimize printing a decimal number's final digit.
|
|
const char one_ASCII_final_digits[10][2] {
|
|
{'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
|
|
{'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
|
|
};
|
|
|
|
} // namespace
|
|
|
|
char* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) {
|
|
uint32_t digits;
|
|
// The idea of this implementation is to trim the number of divides to as few
|
|
// as possible, and also reducing memory stores and branches, by going in
|
|
// steps of two digits at a time rather than one whenever possible.
|
|
// The huge-number case is first, in the hopes that the compiler will output
|
|
// that case in one branch-free block of code, and only output conditional
|
|
// branches into it from below.
|
|
if (i >= 1000000000) { // >= 1,000,000,000
|
|
digits = i / 100000000; // 100,000,000
|
|
i -= digits * 100000000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
lt100_000_000:
|
|
digits = i / 1000000; // 1,000,000
|
|
i -= digits * 1000000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
lt1_000_000:
|
|
digits = i / 10000; // 10,000
|
|
i -= digits * 10000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
lt10_000:
|
|
digits = i / 100;
|
|
i -= digits * 100;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
lt100:
|
|
digits = i;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
*buffer = 0;
|
|
return buffer;
|
|
}
|
|
|
|
if (i < 100) {
|
|
digits = i;
|
|
if (i >= 10) goto lt100;
|
|
memcpy(buffer, one_ASCII_final_digits[i], 2);
|
|
return buffer + 1;
|
|
}
|
|
if (i < 10000) { // 10,000
|
|
if (i >= 1000) goto lt10_000;
|
|
digits = i / 100;
|
|
i -= digits * 100;
|
|
*buffer++ = '0' + digits;
|
|
goto lt100;
|
|
}
|
|
if (i < 1000000) { // 1,000,000
|
|
if (i >= 100000) goto lt1_000_000;
|
|
digits = i / 10000; // 10,000
|
|
i -= digits * 10000;
|
|
*buffer++ = '0' + digits;
|
|
goto lt10_000;
|
|
}
|
|
if (i < 100000000) { // 100,000,000
|
|
if (i >= 10000000) goto lt100_000_000;
|
|
digits = i / 1000000; // 1,000,000
|
|
i -= digits * 1000000;
|
|
*buffer++ = '0' + digits;
|
|
goto lt1_000_000;
|
|
}
|
|
// we already know that i < 1,000,000,000
|
|
digits = i / 100000000; // 100,000,000
|
|
i -= digits * 100000000;
|
|
*buffer++ = '0' + digits;
|
|
goto lt100_000_000;
|
|
}
|
|
|
|
char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) {
|
|
uint32_t u = i;
|
|
if (i < 0) {
|
|
*buffer++ = '-';
|
|
// We need to do the negation in modular (i.e., "unsigned")
|
|
// arithmetic; MSVC++ apprently warns for plain "-u", so
|
|
// we write the equivalent expression "0 - u" instead.
|
|
u = 0 - u;
|
|
}
|
|
return numbers_internal::FastIntToBuffer(u, buffer);
|
|
}
|
|
|
|
char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) {
|
|
uint32_t u32 = static_cast<uint32_t>(i);
|
|
if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer);
|
|
|
|
// Here we know i has at least 10 decimal digits.
|
|
uint64_t top_1to11 = i / 1000000000;
|
|
u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000);
|
|
uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11);
|
|
|
|
if (top_1to11_32 == top_1to11) {
|
|
buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer);
|
|
} else {
|
|
// top_1to11 has more than 32 bits too; print it in two steps.
|
|
uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100);
|
|
uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100);
|
|
buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer);
|
|
PutTwoDigits(mid_2, buffer);
|
|
buffer += 2;
|
|
}
|
|
|
|
// We have only 9 digits now, again the maximum uint32_t can handle fully.
|
|
uint32_t digits = u32 / 10000000; // 10,000,000
|
|
u32 -= digits * 10000000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
digits = u32 / 100000; // 100,000
|
|
u32 -= digits * 100000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
digits = u32 / 1000; // 1,000
|
|
u32 -= digits * 1000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
digits = u32 / 10;
|
|
u32 -= digits * 10;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
memcpy(buffer, one_ASCII_final_digits[u32], 2);
|
|
return buffer + 1;
|
|
}
|
|
|
|
char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) {
|
|
uint64_t u = i;
|
|
if (i < 0) {
|
|
*buffer++ = '-';
|
|
u = 0 - u;
|
|
}
|
|
return numbers_internal::FastIntToBuffer(u, buffer);
|
|
}
|
|
|
|
// Given a 128-bit number expressed as a pair of uint64_t, high half first,
|
|
// return that number multiplied by the given 32-bit value. If the result is
|
|
// too large to fit in a 128-bit number, divide it by 2 until it fits.
|
|
static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,
|
|
uint32_t mul) {
|
|
uint64_t bits0_31 = num.second & 0xFFFFFFFF;
|
|
uint64_t bits32_63 = num.second >> 32;
|
|
uint64_t bits64_95 = num.first & 0xFFFFFFFF;
|
|
uint64_t bits96_127 = num.first >> 32;
|
|
|
|
// The picture so far: each of these 64-bit values has only the lower 32 bits
|
|
// filled in.
|
|
// bits96_127: [ 00000000 xxxxxxxx ]
|
|
// bits64_95: [ 00000000 xxxxxxxx ]
|
|
// bits32_63: [ 00000000 xxxxxxxx ]
|
|
// bits0_31: [ 00000000 xxxxxxxx ]
|
|
|
|
bits0_31 *= mul;
|
|
bits32_63 *= mul;
|
|
bits64_95 *= mul;
|
|
bits96_127 *= mul;
|
|
|
|
// Now the top halves may also have value, though all 64 of their bits will
|
|
// never be set at the same time, since they are a result of a 32x32 bit
|
|
// multiply. This makes the carry calculation slightly easier.
|
|
// bits96_127: [ mmmmmmmm | mmmmmmmm ]
|
|
// bits64_95: [ | mmmmmmmm mmmmmmmm | ]
|
|
// bits32_63: | [ mmmmmmmm | mmmmmmmm ]
|
|
// bits0_31: | [ | mmmmmmmm mmmmmmmm ]
|
|
// eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ]
|
|
|
|
uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);
|
|
uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +
|
|
(bits0_63 < bits0_31);
|
|
uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);
|
|
if (bits128_up == 0) return {bits64_127, bits0_63};
|
|
|
|
int shift = 64 - base_internal::CountLeadingZeros64(bits128_up);
|
|
uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));
|
|
uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));
|
|
return {hi, lo};
|
|
}
|
|
|
|
// Compute num * 5 ^ expfive, and return the first 128 bits of the result,
|
|
// where the first bit is always a one. So PowFive(1, 0) starts 0b100000,
|
|
// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc.
|
|
static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {
|
|
std::pair<uint64_t, uint64_t> result = {num, 0};
|
|
while (expfive >= 13) {
|
|
// 5^13 is the highest power of five that will fit in a 32-bit integer.
|
|
result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);
|
|
expfive -= 13;
|
|
}
|
|
constexpr int powers_of_five[13] = {
|
|
1,
|
|
5,
|
|
5 * 5,
|
|
5 * 5 * 5,
|
|
5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};
|
|
result = Mul32(result, powers_of_five[expfive & 15]);
|
|
int shift = base_internal::CountLeadingZeros64(result.first);
|
|
if (shift != 0) {
|
|
result.first = (result.first << shift) + (result.second >> (64 - shift));
|
|
result.second = (result.second << shift);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct ExpDigits {
|
|
int32_t exponent;
|
|
char digits[6];
|
|
};
|
|
|
|
// SplitToSix converts value, a positive double-precision floating-point number,
|
|
// into a base-10 exponent and 6 ASCII digits, where the first digit is never
|
|
// zero. For example, SplitToSix(1) returns an exponent of zero and a digits
|
|
// array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between
|
|
// two possible representations, e.g. value = 100000.5, then "round to even" is
|
|
// performed.
|
|
static ExpDigits SplitToSix(const double value) {
|
|
ExpDigits exp_dig;
|
|
int exp = 5;
|
|
double d = value;
|
|
// First step: calculate a close approximation of the output, where the
|
|
// value d will be between 100,000 and 999,999, representing the digits
|
|
// in the output ASCII array, and exp is the base-10 exponent. It would be
|
|
// faster to use a table here, and to look up the base-2 exponent of value,
|
|
// however value is an IEEE-754 64-bit number, so the table would have 2,000
|
|
// entries, which is not cache-friendly.
|
|
if (d >= 999999.5) {
|
|
if (d >= 1e+261) exp += 256, d *= 1e-256;
|
|
if (d >= 1e+133) exp += 128, d *= 1e-128;
|
|
if (d >= 1e+69) exp += 64, d *= 1e-64;
|
|
if (d >= 1e+37) exp += 32, d *= 1e-32;
|
|
if (d >= 1e+21) exp += 16, d *= 1e-16;
|
|
if (d >= 1e+13) exp += 8, d *= 1e-8;
|
|
if (d >= 1e+9) exp += 4, d *= 1e-4;
|
|
if (d >= 1e+7) exp += 2, d *= 1e-2;
|
|
if (d >= 1e+6) exp += 1, d *= 1e-1;
|
|
} else {
|
|
if (d < 1e-250) exp -= 256, d *= 1e256;
|
|
if (d < 1e-122) exp -= 128, d *= 1e128;
|
|
if (d < 1e-58) exp -= 64, d *= 1e64;
|
|
if (d < 1e-26) exp -= 32, d *= 1e32;
|
|
if (d < 1e-10) exp -= 16, d *= 1e16;
|
|
if (d < 1e-2) exp -= 8, d *= 1e8;
|
|
if (d < 1e+2) exp -= 4, d *= 1e4;
|
|
if (d < 1e+4) exp -= 2, d *= 1e2;
|
|
if (d < 1e+5) exp -= 1, d *= 1e1;
|
|
}
|
|
// At this point, d is in the range [99999.5..999999.5) and exp is in the
|
|
// range [-324..308]. Since we need to round d up, we want to add a half
|
|
// and truncate.
|
|
// However, the technique above may have lost some precision, due to its
|
|
// repeated multiplication by constants that each may be off by half a bit
|
|
// of precision. This only matters if we're close to the edge though.
|
|
// Since we'd like to know if the fractional part of d is close to a half,
|
|
// we multiply it by 65536 and see if the fractional part is close to 32768.
|
|
// (The number doesn't have to be a power of two,but powers of two are faster)
|
|
uint64_t d64k = d * 65536;
|
|
int dddddd; // A 6-digit decimal integer.
|
|
if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {
|
|
// OK, it's fairly likely that precision was lost above, which is
|
|
// not a surprise given only 52 mantissa bits are available. Therefore
|
|
// redo the calculation using 128-bit numbers. (64 bits are not enough).
|
|
|
|
// Start out with digits rounded down; maybe add one below.
|
|
dddddd = static_cast<int>(d64k / 65536);
|
|
|
|
// mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual
|
|
// value we're representing, of course, is M.mmm... * 2^exp2.
|
|
int exp2;
|
|
double m = std::frexp(value, &exp2);
|
|
uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0);
|
|
// std::frexp returns an m value in the range [0.5, 1.0), however we
|
|
// can't multiply it by 2^64 and convert to an integer because some FPUs
|
|
// throw an exception when converting an number higher than 2^63 into an
|
|
// integer - even an unsigned 64-bit integer! Fortunately it doesn't matter
|
|
// since m only has 52 significant bits anyway.
|
|
mantissa <<= 1;
|
|
exp2 -= 64; // not needed, but nice for debugging
|
|
|
|
// OK, we are here to compare:
|
|
// (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2
|
|
// so we can round up dddddd if appropriate. Those values span the full
|
|
// range of 600 orders of magnitude of IEE 64-bit floating-point.
|
|
// Fortunately, we already know they are very close, so we don't need to
|
|
// track the base-2 exponent of both sides. This greatly simplifies the
|
|
// the math since the 2^exp2 calculation is unnecessary and the power-of-10
|
|
// calculation can become a power-of-5 instead.
|
|
|
|
std::pair<uint64_t, uint64_t> edge, val;
|
|
if (exp >= 6) {
|
|
// Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa
|
|
// Since we're tossing powers of two, 2 * dddddd + 1 is the
|
|
// same as dddddd + 0.5
|
|
edge = PowFive(2 * dddddd + 1, exp - 5);
|
|
|
|
val.first = mantissa;
|
|
val.second = 0;
|
|
} else {
|
|
// We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did
|
|
// above because (exp - 5) is negative. So we compare (dddddd + 0.5) to
|
|
// mantissa * 5 ^ (5 - exp)
|
|
edge = PowFive(2 * dddddd + 1, 0);
|
|
|
|
val = PowFive(mantissa, 5 - exp);
|
|
}
|
|
// printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first,
|
|
// val.second, edge.first, edge.second);
|
|
if (val > edge) {
|
|
dddddd++;
|
|
} else if (val == edge) {
|
|
dddddd += (dddddd & 1);
|
|
}
|
|
} else {
|
|
// Here, we are not close to the edge.
|
|
dddddd = static_cast<int>((d64k + 32768) / 65536);
|
|
}
|
|
if (dddddd == 1000000) {
|
|
dddddd = 100000;
|
|
exp += 1;
|
|
}
|
|
exp_dig.exponent = exp;
|
|
|
|
int two_digits = dddddd / 10000;
|
|
dddddd -= two_digits * 10000;
|
|
PutTwoDigits(two_digits, &exp_dig.digits[0]);
|
|
|
|
two_digits = dddddd / 100;
|
|
dddddd -= two_digits * 100;
|
|
PutTwoDigits(two_digits, &exp_dig.digits[2]);
|
|
|
|
PutTwoDigits(dddddd, &exp_dig.digits[4]);
|
|
return exp_dig;
|
|
}
|
|
|
|
// Helper function for fast formatting of floating-point.
|
|
// The result is the same as "%g", a.k.a. "%.6g".
|
|
size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) {
|
|
static_assert(std::numeric_limits<float>::is_iec559,
|
|
"IEEE-754/IEC-559 support only");
|
|
|
|
char* out = buffer; // we write data to out, incrementing as we go, but
|
|
// FloatToBuffer always returns the address of the buffer
|
|
// passed in.
|
|
|
|
if (std::isnan(d)) {
|
|
strcpy(out, "nan"); // NOLINT(runtime/printf)
|
|
return 3;
|
|
}
|
|
if (d == 0) { // +0 and -0 are handled here
|
|
if (std::signbit(d)) *out++ = '-';
|
|
*out++ = '0';
|
|
*out = 0;
|
|
return out - buffer;
|
|
}
|
|
if (d < 0) {
|
|
*out++ = '-';
|
|
d = -d;
|
|
}
|
|
if (std::isinf(d)) {
|
|
strcpy(out, "inf"); // NOLINT(runtime/printf)
|
|
return out + 3 - buffer;
|
|
}
|
|
|
|
auto exp_dig = SplitToSix(d);
|
|
int exp = exp_dig.exponent;
|
|
const char* digits = exp_dig.digits;
|
|
out[0] = '0';
|
|
out[1] = '.';
|
|
switch (exp) {
|
|
case 5:
|
|
memcpy(out, &digits[0], 6), out += 6;
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 4:
|
|
memcpy(out, &digits[0], 5), out += 5;
|
|
if (digits[5] != '0') {
|
|
*out++ = '.';
|
|
*out++ = digits[5];
|
|
}
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 3:
|
|
memcpy(out, &digits[0], 4), out += 4;
|
|
if ((digits[5] | digits[4]) != '0') {
|
|
*out++ = '.';
|
|
*out++ = digits[4];
|
|
if (digits[5] != '0') *out++ = digits[5];
|
|
}
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 2:
|
|
memcpy(out, &digits[0], 3), out += 3;
|
|
*out++ = '.';
|
|
memcpy(out, &digits[3], 3);
|
|
out += 3;
|
|
while (out[-1] == '0') --out;
|
|
if (out[-1] == '.') --out;
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 1:
|
|
memcpy(out, &digits[0], 2), out += 2;
|
|
*out++ = '.';
|
|
memcpy(out, &digits[2], 4);
|
|
out += 4;
|
|
while (out[-1] == '0') --out;
|
|
if (out[-1] == '.') --out;
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 0:
|
|
memcpy(out, &digits[0], 1), out += 1;
|
|
*out++ = '.';
|
|
memcpy(out, &digits[1], 5);
|
|
out += 5;
|
|
while (out[-1] == '0') --out;
|
|
if (out[-1] == '.') --out;
|
|
*out = 0;
|
|
return out - buffer;
|
|
case -4:
|
|
out[2] = '0';
|
|
++out;
|
|
ABSL_FALLTHROUGH_INTENDED;
|
|
case -3:
|
|
out[2] = '0';
|
|
++out;
|
|
ABSL_FALLTHROUGH_INTENDED;
|
|
case -2:
|
|
out[2] = '0';
|
|
++out;
|
|
ABSL_FALLTHROUGH_INTENDED;
|
|
case -1:
|
|
out += 2;
|
|
memcpy(out, &digits[0], 6);
|
|
out += 6;
|
|
while (out[-1] == '0') --out;
|
|
*out = 0;
|
|
return out - buffer;
|
|
}
|
|
assert(exp < -4 || exp >= 6);
|
|
out[0] = digits[0];
|
|
assert(out[1] == '.');
|
|
out += 2;
|
|
memcpy(out, &digits[1], 5), out += 5;
|
|
while (out[-1] == '0') --out;
|
|
if (out[-1] == '.') --out;
|
|
*out++ = 'e';
|
|
if (exp > 0) {
|
|
*out++ = '+';
|
|
} else {
|
|
*out++ = '-';
|
|
exp = -exp;
|
|
}
|
|
if (exp > 99) {
|
|
int dig1 = exp / 100;
|
|
exp -= dig1 * 100;
|
|
*out++ = '0' + dig1;
|
|
}
|
|
PutTwoDigits(exp, out);
|
|
out += 2;
|
|
*out = 0;
|
|
return out - buffer;
|
|
}
|
|
|
|
namespace {
|
|
// Represents integer values of digits.
|
|
// Uses 36 to indicate an invalid character since we support
|
|
// bases up to 36.
|
|
static const int8_t kAsciiToInt[256] = {
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s.
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5,
|
|
6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
|
36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
|
|
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
|
|
|
|
// Parse the sign and optional hex or oct prefix in text.
|
|
inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/,
|
|
int* base_ptr /*inout*/,
|
|
bool* negative_ptr /*output*/) {
|
|
if (text->data() == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
const char* start = text->data();
|
|
const char* end = start + text->size();
|
|
int base = *base_ptr;
|
|
|
|
// Consume whitespace.
|
|
while (start < end && absl::ascii_isspace(start[0])) {
|
|
++start;
|
|
}
|
|
while (start < end && absl::ascii_isspace(end[-1])) {
|
|
--end;
|
|
}
|
|
if (start >= end) {
|
|
return false;
|
|
}
|
|
|
|
// Consume sign.
|
|
*negative_ptr = (start[0] == '-');
|
|
if (*negative_ptr || start[0] == '+') {
|
|
++start;
|
|
if (start >= end) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Consume base-dependent prefix.
|
|
// base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
|
|
// base 16: "0x" -> base 16
|
|
// Also validate the base.
|
|
if (base == 0) {
|
|
if (end - start >= 2 && start[0] == '0' &&
|
|
(start[1] == 'x' || start[1] == 'X')) {
|
|
base = 16;
|
|
start += 2;
|
|
if (start >= end) {
|
|
// "0x" with no digits after is invalid.
|
|
return false;
|
|
}
|
|
} else if (end - start >= 1 && start[0] == '0') {
|
|
base = 8;
|
|
start += 1;
|
|
} else {
|
|
base = 10;
|
|
}
|
|
} else if (base == 16) {
|
|
if (end - start >= 2 && start[0] == '0' &&
|
|
(start[1] == 'x' || start[1] == 'X')) {
|
|
start += 2;
|
|
if (start >= end) {
|
|
// "0x" with no digits after is invalid.
|
|
return false;
|
|
}
|
|
}
|
|
} else if (base >= 2 && base <= 36) {
|
|
// okay
|
|
} else {
|
|
return false;
|
|
}
|
|
*text = absl::string_view(start, end - start);
|
|
*base_ptr = base;
|
|
return true;
|
|
}
|
|
|
|
// Consume digits.
|
|
//
|
|
// The classic loop:
|
|
//
|
|
// for each digit
|
|
// value = value * base + digit
|
|
// value *= sign
|
|
//
|
|
// The classic loop needs overflow checking. It also fails on the most
|
|
// negative integer, -2147483648 in 32-bit two's complement representation.
|
|
//
|
|
// My improved loop:
|
|
//
|
|
// if (!negative)
|
|
// for each digit
|
|
// value = value * base
|
|
// value = value + digit
|
|
// else
|
|
// for each digit
|
|
// value = value * base
|
|
// value = value - digit
|
|
//
|
|
// Overflow checking becomes simple.
|
|
|
|
// Lookup tables per IntType:
|
|
// vmax/base and vmin/base are precomputed because division costs at least 8ns.
|
|
// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
|
|
// struct of arrays) would probably be better in terms of d-cache for the most
|
|
// commonly used bases.
|
|
template <typename IntType>
|
|
struct LookupTables {
|
|
static const IntType kVmaxOverBase[];
|
|
static const IntType kVminOverBase[];
|
|
};
|
|
|
|
// An array initializer macro for X/base where base in [0, 36].
|
|
// However, note that lookups for base in [0, 1] should never happen because
|
|
// base has been validated to be in [2, 36] by safe_parse_sign_and_base().
|
|
#define X_OVER_BASE_INITIALIZER(X) \
|
|
{ \
|
|
0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \
|
|
X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \
|
|
X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \
|
|
X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \
|
|
X / 35, X / 36, \
|
|
}
|
|
|
|
template <typename IntType>
|
|
const IntType LookupTables<IntType>::kVmaxOverBase[] =
|
|
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
|
|
|
|
template <typename IntType>
|
|
const IntType LookupTables<IntType>::kVminOverBase[] =
|
|
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());
|
|
|
|
#undef X_OVER_BASE_INITIALIZER
|
|
|
|
template <typename IntType>
|
|
inline bool safe_parse_positive_int(absl::string_view text, int base,
|
|
IntType* value_p) {
|
|
IntType value = 0;
|
|
const IntType vmax = std::numeric_limits<IntType>::max();
|
|
assert(vmax > 0);
|
|
assert(base >= 0);
|
|
assert(vmax >= static_cast<IntType>(base));
|
|
const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
|
|
const char* start = text.data();
|
|
const char* end = start + text.size();
|
|
// loop over digits
|
|
for (; start < end; ++start) {
|
|
unsigned char c = static_cast<unsigned char>(start[0]);
|
|
int digit = kAsciiToInt[c];
|
|
if (digit >= base) {
|
|
*value_p = value;
|
|
return false;
|
|
}
|
|
if (value > vmax_over_base) {
|
|
*value_p = vmax;
|
|
return false;
|
|
}
|
|
value *= base;
|
|
if (value > vmax - digit) {
|
|
*value_p = vmax;
|
|
return false;
|
|
}
|
|
value += digit;
|
|
}
|
|
*value_p = value;
|
|
return true;
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline bool safe_parse_negative_int(absl::string_view text, int base,
|
|
IntType* value_p) {
|
|
IntType value = 0;
|
|
const IntType vmin = std::numeric_limits<IntType>::min();
|
|
assert(vmin < 0);
|
|
assert(vmin <= 0 - base);
|
|
IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
|
|
// 2003 c++ standard [expr.mul]
|
|
// "... the sign of the remainder is implementation-defined."
|
|
// Although (vmin/base)*base + vmin%base is always vmin.
|
|
// 2011 c++ standard tightens the spec but we cannot rely on it.
|
|
// TODO(junyer): Handle this in the lookup table generation.
|
|
if (vmin % base > 0) {
|
|
vmin_over_base += 1;
|
|
}
|
|
const char* start = text.data();
|
|
const char* end = start + text.size();
|
|
// loop over digits
|
|
for (; start < end; ++start) {
|
|
unsigned char c = static_cast<unsigned char>(start[0]);
|
|
int digit = kAsciiToInt[c];
|
|
if (digit >= base) {
|
|
*value_p = value;
|
|
return false;
|
|
}
|
|
if (value < vmin_over_base) {
|
|
*value_p = vmin;
|
|
return false;
|
|
}
|
|
value *= base;
|
|
if (value < vmin + digit) {
|
|
*value_p = vmin;
|
|
return false;
|
|
}
|
|
value -= digit;
|
|
}
|
|
*value_p = value;
|
|
return true;
|
|
}
|
|
|
|
// Input format based on POSIX.1-2008 strtol
|
|
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
|
|
template <typename IntType>
|
|
inline bool safe_int_internal(absl::string_view text, IntType* value_p,
|
|
int base) {
|
|
*value_p = 0;
|
|
bool negative;
|
|
if (!safe_parse_sign_and_base(&text, &base, &negative)) {
|
|
return false;
|
|
}
|
|
if (!negative) {
|
|
return safe_parse_positive_int(text, base, value_p);
|
|
} else {
|
|
return safe_parse_negative_int(text, base, value_p);
|
|
}
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline bool safe_uint_internal(absl::string_view text, IntType* value_p,
|
|
int base) {
|
|
*value_p = 0;
|
|
bool negative;
|
|
if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) {
|
|
return false;
|
|
}
|
|
return safe_parse_positive_int(text, base, value_p);
|
|
}
|
|
} // anonymous namespace
|
|
|
|
namespace numbers_internal {
|
|
bool safe_strto32_base(absl::string_view text, int32_t* value, int base) {
|
|
return safe_int_internal<int32_t>(text, value, base);
|
|
}
|
|
|
|
bool safe_strto64_base(absl::string_view text, int64_t* value, int base) {
|
|
return safe_int_internal<int64_t>(text, value, base);
|
|
}
|
|
|
|
bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) {
|
|
return safe_uint_internal<uint32_t>(text, value, base);
|
|
}
|
|
|
|
bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) {
|
|
return safe_uint_internal<uint64_t>(text, value, base);
|
|
}
|
|
} // namespace numbers_internal
|
|
|
|
} // inline namespace lts_2018_12_18
|
|
} // namespace absl
|