lokinet/llarp/ev_kqueue.hpp
2018-07-31 20:32:13 -07:00

296 lines
6.0 KiB
C++

#ifndef EV_KQUEUE_HPP
#define EV_KQUEUE_HPP
#include <llarp/buffer.h>
#include <llarp/net.h>
#if __FreeBSD__ || __OpenBSD__ || __NetBSD__
// kqueue / kevent
#include <sys/event.h>
#include <sys/time.h>
#endif
#if(__APPLE__ && __MACH__)
// kqueue / kevent
#include <sys/event.h>
#include <sys/time.h>
#endif
// MacOS needs this
#ifndef SOCK_NONBLOCK
#include <fcntl.h>
#define SOCK_NONBLOCK O_NONBLOCK
#endif
// original upstream
#include <unistd.h>
#include <cstdio>
#include <llarp/net.hpp>
#include "ev.hpp"
#include "logger.hpp"
namespace llarp
{
struct udp_listener : public ev_io
{
llarp_udp_io* udp;
udp_listener(int fd, llarp_udp_io* u) : ev_io(fd), udp(u){};
~udp_listener()
{
}
virtual int
read(void* buf, size_t sz)
{
sockaddr_in6 src;
socklen_t slen = sizeof(src);
sockaddr* addr = (sockaddr*)&src;
ssize_t ret = ::recvfrom(fd, buf, sz, 0, addr, &slen);
if(ret == -1)
return -1;
udp->recvfrom(udp, addr, buf, ret);
return 0;
}
virtual int
sendto(const sockaddr* to, const void* data, size_t sz)
{
socklen_t slen;
switch(to->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
default:
return -1;
}
if(!fd)
{
printf("kqueue sendto fd empty\n");
return -1;
}
ssize_t sent = ::sendto(fd, data, sz, 0, to, slen);
if(sent == -1)
perror("kqueue sendto()");
return sent;
}
};
}; // namespace llarp
struct llarp_kqueue_loop : public llarp_ev_loop
{
int kqueuefd;
struct kevent change; /* event we want to monitor */
llarp_kqueue_loop() : kqueuefd(-1)
{
}
~llarp_kqueue_loop()
{
}
bool
init()
{
if(kqueuefd == -1)
{
kqueuefd = kqueue();
}
return kqueuefd != -1;
}
int
tick(int ms)
{
(void)ms;
struct kevent events[1024];
int result;
byte_t readbuf[2048];
result = kevent(kqueuefd, NULL, 0, events, 1024, NULL);
// result: 0 is a timeout
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].udata);
if(ev->read(readbuf, sizeof(readbuf)) == -1)
{
llarp::LogInfo("tick close ev");
close_ev(ev);
// ev->fd = 0;
delete ev;
// break;
}
++idx;
}
for(auto& l : udp_listeners)
if(l->tick)
l->tick(l);
}
return result;
}
int
run()
{
struct kevent events[1024];
int result;
byte_t readbuf[2048];
do
{
result = kevent(kqueuefd, NULL, 0, events, 1024, NULL);
// result: 0 is a timeout
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].udata);
if(ev && ev->fd)
{
// printf("reading_ev [%x] fd[%d]\n", ev, ev->fd);
if(ev->read(readbuf, sizeof(readbuf)) == -1)
{
llarp::LogInfo("run error reading, should close ev");
close_ev(ev);
// ev->fd = 0;
//delete ev;
// break;
}
}
else
{
llarp::LogWarn("kqueue event ", idx, " udata wasnt an ev_io");
}
++idx;
}
}
for(auto& l : udp_listeners)
if(l->tick)
l->tick(l);
} while(result != -1);
return result;
}
int
udp_bind(const sockaddr* addr)
{
socklen_t slen;
llarp::LogDebug("kqueue bind affam", addr->sa_family);
switch(addr->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
#ifdef AF_LINK
#endif
#ifdef AF_PACKET
case AF_PACKET:
slen = sizeof(struct sockaddr_ll);
break;
#endif
default:
llarp::LogError("unsupported address family");
return -1;
}
int fd = socket(addr->sa_family, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("socket()");
return -1;
}
if(addr->sa_family == AF_INET6)
{
// enable dual stack explicitly
int dual = 1;
if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &dual, sizeof(dual)) == -1)
{
// failed
perror("setsockopt()");
close(fd);
return -1;
}
}
llarp::Addr a(*addr);
llarp::LogInfo("bind to ", a);
// FreeBSD handbook said to do this
if(addr->sa_family == AF_INET && INADDR_ANY)
a._addr4.sin_addr.s_addr = htonl(INADDR_ANY);
if(bind(fd, addr, slen) == -1)
{
perror("bind()");
close(fd);
return -1;
}
return fd;
}
bool
close_ev(llarp::ev_io* ev)
{
// printf("closing_ev [%x] fd[%d]\n", ev, ev->fd);
EV_SET(&change, ev->fd, EVFILT_READ, EV_DELETE, 0, 0, NULL);
return kevent(kqueuefd, &change, 1, NULL, 0, NULL) == -1;
}
bool
udp_listen(llarp_udp_io* l, const sockaddr* src)
{
int fd = udp_bind(src);
if(fd == -1)
return false;
llarp::udp_listener* listener = new llarp::udp_listener(fd, l);
EV_SET(&change, fd, EVFILT_READ, EV_ADD, 0, 0, listener);
if(kevent(kqueuefd, &change, 1, NULL, 0, NULL) == -1)
{
l->impl = nullptr;
delete listener;
return false;
}
udp_listeners.push_back(l);
l->impl = listener;
return true;
}
bool
udp_close(llarp_udp_io* l)
{
bool ret = false;
auto listener = static_cast< llarp::udp_listener* >(l->impl);
if(listener)
{
// printf("Calling close_ev for [%x] fd[%d]\n", listener, listener->fd);
ret = close_ev(listener);
l->impl = nullptr;
delete listener;
udp_listeners.remove(l);
}
return ret;
}
void
stop()
{
if(kqueuefd != -1)
::close(kqueuefd);
kqueuefd = -1;
}
};
#endif