lokinet/llarp/path/path.cpp
2019-02-27 07:55:26 -05:00

923 lines
24 KiB
C++

#include <path/path.hpp>
#include <messages/dht.hpp>
#include <messages/discard.hpp>
#include <messages/exit.hpp>
#include <messages/path_latency.hpp>
#include <messages/relay_commit.hpp>
#include <messages/transfer_traffic.hpp>
#include <path/pathbuilder.hpp>
#include <profiling.hpp>
#include <router/abstractrouter.hpp>
#include <util/buffer.hpp>
#include <util/endian.hpp>
#include <deque>
namespace llarp
{
namespace path
{
std::ostream&
TransitHopInfo::print(std::ostream& stream, int level, int spaces) const
{
Printer printer(stream, level, spaces);
printer.printAttribute("tx", txID);
printer.printAttribute("rx", rxID);
printer.printAttribute("upstream", upstream);
printer.printAttribute("downstream", downstream);
return stream;
}
PathContext::PathContext(AbstractRouter* router)
: m_Router(router), m_AllowTransit(false)
{
}
PathContext::~PathContext()
{
}
void
PathContext::AllowTransit()
{
m_AllowTransit = true;
}
bool
PathContext::AllowingTransit() const
{
return m_AllowTransit;
}
llarp_threadpool*
PathContext::Worker()
{
return m_Router->threadpool();
}
Crypto*
PathContext::Crypto()
{
return m_Router->crypto();
}
Logic*
PathContext::Logic()
{
return m_Router->logic();
}
const SecretKey&
PathContext::EncryptionSecretKey()
{
return m_Router->encryption();
}
bool
PathContext::HopIsUs(const RouterID& k) const
{
return std::equal(m_Router->pubkey(), m_Router->pubkey() + PUBKEYSIZE,
k.begin());
}
bool
PathContext::ForwardLRCM(const RouterID& nextHop,
const std::array< EncryptedFrame, 8 >& frames)
{
LogDebug("forwarding LRCM to ", nextHop);
LR_CommitMessage msg;
msg.frames = frames;
return m_Router->SendToOrQueue(nextHop, &msg);
}
template < typename Map_t, typename Key_t, typename CheckValue_t,
typename GetFunc_t >
IHopHandler*
MapGet(Map_t& map, const Key_t& k, CheckValue_t check, GetFunc_t get)
{
util::Lock lock(map.first);
auto range = map.second.equal_range(k);
for(auto i = range.first; i != range.second; ++i)
{
if(check(i->second))
return get(i->second);
}
return nullptr;
}
template < typename Map_t, typename Key_t, typename CheckValue_t >
bool
MapHas(Map_t& map, const Key_t& k, CheckValue_t check)
{
util::Lock lock(map.first);
auto range = map.second.equal_range(k);
for(auto i = range.first; i != range.second; ++i)
{
if(check(i->second))
return true;
}
return false;
}
template < typename Map_t, typename Key_t, typename Value_t >
void
MapPut(Map_t& map, const Key_t& k, const Value_t& v)
{
util::Lock lock(map.first);
map.second.emplace(k, v);
}
template < typename Map_t, typename Visit_t >
void
MapIter(Map_t& map, Visit_t v)
{
util::Lock lock(map.first);
for(const auto& item : map.second)
v(item);
}
template < typename Map_t, typename Key_t, typename Check_t >
void
MapDel(Map_t& map, const Key_t& k, Check_t check)
{
util::Lock lock(map.first);
auto range = map.second.equal_range(k);
for(auto i = range.first; i != range.second;)
{
if(check(i->second))
i = map.second.erase(i);
else
++i;
}
}
void
PathContext::AddOwnPath(PathSet* set, Path* path)
{
set->AddPath(path);
MapPut(m_OurPaths, path->TXID(), set);
MapPut(m_OurPaths, path->RXID(), set);
}
bool
PathContext::HasTransitHop(const TransitHopInfo& info)
{
return MapHas(m_TransitPaths, info.txID,
[info](const std::shared_ptr< TransitHop >& hop) -> bool {
return info == hop->info;
});
}
IHopHandler*
PathContext::GetByUpstream(const RouterID& remote, const PathID_t& id)
{
auto own = MapGet(m_OurPaths, id,
[](__attribute__((unused)) const PathSet* s) -> bool {
// TODO: is this right?
return true;
},
[remote, id](PathSet* p) -> IHopHandler* {
return p->GetByUpstream(remote, id);
});
if(own)
return own;
return MapGet(m_TransitPaths, id,
[remote](const std::shared_ptr< TransitHop >& hop) -> bool {
return hop->info.upstream == remote;
},
[](const std::shared_ptr< TransitHop >& h) -> IHopHandler* {
return h.get();
});
}
bool
PathContext::TransitHopPreviousIsRouter(const PathID_t& path,
const RouterID& otherRouter)
{
util::Lock lock(m_TransitPaths.first);
auto itr = m_TransitPaths.second.find(path);
if(itr == m_TransitPaths.second.end())
return false;
return itr->second->info.downstream == otherRouter;
}
IHopHandler*
PathContext::GetByDownstream(const RouterID& remote, const PathID_t& id)
{
return MapGet(m_TransitPaths, id,
[remote](const std::shared_ptr< TransitHop >& hop) -> bool {
return hop->info.downstream == remote;
},
[](const std::shared_ptr< TransitHop >& h) -> IHopHandler* {
return h.get();
});
}
PathSet*
PathContext::GetLocalPathSet(const PathID_t& id)
{
auto& map = m_OurPaths;
util::Lock lock(map.first);
auto itr = map.second.find(id);
if(itr != map.second.end())
{
return itr->second;
}
return nullptr;
}
const byte_t*
PathContext::OurRouterID() const
{
return m_Router->pubkey();
}
AbstractRouter*
PathContext::Router()
{
return m_Router;
}
IHopHandler*
PathContext::GetPathForTransfer(const PathID_t& id)
{
RouterID us(OurRouterID());
auto& map = m_TransitPaths;
{
util::Lock lock(map.first);
auto range = map.second.equal_range(id);
for(auto i = range.first; i != range.second; ++i)
{
if(i->second->info.upstream == us)
return i->second.get();
}
}
return nullptr;
}
void
PathContext::PutTransitHop(std::shared_ptr< TransitHop > hop)
{
MapPut(m_TransitPaths, hop->info.txID, hop);
MapPut(m_TransitPaths, hop->info.rxID, hop);
}
void
PathContext::ExpirePaths(llarp_time_t now)
{
util::Lock lock(m_TransitPaths.first);
auto& map = m_TransitPaths.second;
auto itr = map.begin();
while(itr != map.end())
{
if(itr->second->Expired(now))
{
itr = map.erase(itr);
}
else
++itr;
}
for(auto& builder : m_PathBuilders)
{
if(builder)
builder->ExpirePaths(now);
}
}
void
PathContext::BuildPaths(llarp_time_t now)
{
for(auto& builder : m_PathBuilders)
{
if(builder->ShouldBuildMore(now))
{
builder->BuildOne();
}
}
}
void
PathContext::TickPaths(llarp_time_t now)
{
for(auto& builder : m_PathBuilders)
builder->Tick(now, m_Router);
}
routing::IMessageHandler*
PathContext::GetHandler(const PathID_t& id)
{
routing::IMessageHandler* h = nullptr;
auto pathset = GetLocalPathSet(id);
if(pathset)
{
h = pathset->GetPathByID(id);
}
if(h)
return h;
RouterID us(OurRouterID());
auto& map = m_TransitPaths;
{
util::Lock lock(map.first);
auto range = map.second.equal_range(id);
for(auto i = range.first; i != range.second; ++i)
{
if(i->second->info.upstream == us)
return i->second.get();
}
}
return nullptr;
}
void
PathContext::AddPathBuilder(Builder* ctx)
{
m_PathBuilders.push_back(ctx);
}
void
PathContext::RemovePathSet(PathSet* set)
{
util::Lock lock(m_OurPaths.first);
auto& map = m_OurPaths.second;
auto itr = map.begin();
while(itr != map.end())
{
if(itr->second == set)
itr = map.erase(itr);
else
++itr;
}
}
void
PathContext::RemovePathBuilder(Builder* ctx)
{
m_PathBuilders.remove(ctx);
RemovePathSet(ctx);
}
std::ostream&
TransitHop::print(std::ostream& stream, int level, int spaces) const
{
Printer printer(stream, level, spaces);
printer.printAttribute("TransitHop", info);
printer.printAttribute("started", started);
printer.printAttribute("lifetime", lifetime);
return stream;
}
PathHopConfig::PathHopConfig()
{
}
PathHopConfig::~PathHopConfig()
{
}
Path::Path(const std::vector< RouterContact >& h, PathSet* parent,
PathRole startingRoles)
: m_PathSet(parent), _role(startingRoles)
{
hops.resize(h.size());
size_t hsz = h.size();
for(size_t idx = 0; idx < hsz; ++idx)
{
hops[idx].rc = h[idx];
hops[idx].txID.Randomize();
hops[idx].rxID.Randomize();
}
for(size_t idx = 0; idx < hsz - 1; ++idx)
{
hops[idx].txID = hops[idx + 1].rxID;
}
// initialize parts of the introduction
intro.router = hops[hsz - 1].rc.pubkey;
intro.pathID = hops[hsz - 1].txID;
EnterState(ePathBuilding, parent->Now());
}
void
Path::SetBuildResultHook(BuildResultHookFunc func)
{
m_BuiltHook = func;
}
RouterID
Path::Endpoint() const
{
return hops[hops.size() - 1].rc.pubkey;
}
PubKey
Path::EndpointPubKey() const
{
return hops[hops.size() - 1].rc.pubkey;
}
PathID_t
Path::TXID() const
{
return hops[0].txID;
}
PathID_t
Path::RXID() const
{
return hops[0].rxID;
}
bool
Path::IsReady() const
{
return intro.latency > 0 && _status == ePathEstablished;
}
RouterID
Path::Upstream() const
{
return hops[0].rc.pubkey;
}
void
Path::EnterState(PathStatus st, llarp_time_t now)
{
if(st == ePathTimeout)
{
m_PathSet->HandlePathBuildTimeout(this);
}
else if(st == ePathBuilding)
{
LogInfo("path ", Name(), " is building");
buildStarted = now;
}
else if(st == ePathEstablished && _status == ePathBuilding)
{
LogInfo("path ", Name(), " is built, took ", now - buildStarted, " ms");
}
_status = st;
}
util::StatusObject
PathHopConfig::ExtractStatus() const
{
util::StatusObject obj{{"lifetime", lifetime},
{"router", rc.pubkey.ToHex()},
{"txid", txID.ToHex()},
{"rxid", rxID.ToHex()}};
return obj;
}
util::StatusObject
Path::ExtractStatus() const
{
auto now = llarp::time_now_ms();
util::StatusObject obj{{"intro", intro.ExtractStatus()},
{"lastRecvMsg", m_LastRecvMessage},
{"lastLatencyTest", m_LastLatencyTestTime},
{"buildStarted", buildStarted},
{"expired", Expired(now)},
{"expiresSoon", ExpiresSoon(now)},
{"expiresAt", ExpireTime()},
{"ready", IsReady()},
{"hasExit", SupportsAnyRoles(ePathRoleExit)}};
std::vector< util::StatusObject > hopsObj;
std::transform(hops.begin(), hops.end(), std::back_inserter(hopsObj),
[](const auto& hop) -> util::StatusObject {
return hop.ExtractStatus();
});
obj.Put("hops", hopsObj);
switch(_status)
{
case ePathBuilding:
obj.Put("status", "building");
break;
case ePathEstablished:
obj.Put("status", "established");
break;
case ePathTimeout:
obj.Put("status", "timeout");
break;
case ePathExpired:
obj.Put("status", "expired");
break;
default:
obj.Put("status", "unknown");
break;
}
return obj;
}
void
Path::Tick(llarp_time_t now, AbstractRouter* r)
{
if(Expired(now))
return;
if(_status == ePathBuilding)
{
if(now >= buildStarted)
{
auto dlt = now - buildStarted;
if(dlt >= PATH_BUILD_TIMEOUT)
{
r->routerProfiling().MarkPathFail(this);
EnterState(ePathTimeout, now);
return;
}
}
}
// check to see if this path is dead
if(_status == ePathEstablished)
{
auto dlt = now - m_LastLatencyTestTime;
if(dlt > 5000 && m_LastLatencyTestID == 0)
{
routing::PathLatencyMessage latency;
latency.T = randint();
m_LastLatencyTestID = latency.T;
m_LastLatencyTestTime = now;
SendRoutingMessage(&latency, r);
}
if(SupportsAnyRoles(ePathRoleExit | ePathRoleSVC))
{
if(m_LastRecvMessage && now > m_LastRecvMessage
&& now - m_LastRecvMessage > PATH_ALIVE_TIMEOUT)
{
// TODO: send close exit message
// r->routerProfiling().MarkPathFail(this);
// EnterState(ePathTimeout, now);
return;
}
}
if(m_LastRecvMessage && now > m_LastRecvMessage
&& now - m_LastRecvMessage > PATH_ALIVE_TIMEOUT)
{
if(m_CheckForDead)
{
if(m_CheckForDead(this, dlt))
{
r->routerProfiling().MarkPathFail(this);
EnterState(ePathTimeout, now);
}
}
else
{
r->routerProfiling().MarkPathFail(this);
EnterState(ePathTimeout, now);
}
}
else if(dlt >= 10000 && m_LastRecvMessage == 0)
{
r->routerProfiling().MarkPathFail(this);
EnterState(ePathTimeout, now);
}
}
}
bool
Path::HandleUpstream(const llarp_buffer_t& buf, const TunnelNonce& Y,
AbstractRouter* r)
{
TunnelNonce n = Y;
for(const auto& hop : hops)
{
r->crypto()->xchacha20(buf, hop.shared, n);
n ^= hop.nonceXOR;
}
RelayUpstreamMessage msg;
msg.X = buf;
msg.Y = Y;
msg.pathid = TXID();
if(r->SendToOrQueue(Upstream(), &msg))
return true;
LogError("send to ", Upstream(), " failed");
return false;
}
bool
Path::Expired(llarp_time_t now) const
{
if(_status == ePathEstablished)
return now >= ExpireTime();
else if(_status == ePathBuilding)
return false;
else
return true;
}
std::string
Path::Name() const
{
std::stringstream ss;
ss << "TX=" << TXID() << " RX=" << RXID();
return ss.str();
}
bool
Path::HandleDownstream(const llarp_buffer_t& buf, const TunnelNonce& Y,
AbstractRouter* r)
{
TunnelNonce n = Y;
for(const auto& hop : hops)
{
n ^= hop.nonceXOR;
r->crypto()->xchacha20(buf, hop.shared, n);
}
return HandleRoutingMessage(buf, r);
}
bool
Path::HandleRoutingMessage(const llarp_buffer_t& buf, AbstractRouter* r)
{
if(!r->ParseRoutingMessageBuffer(buf, this, RXID()))
{
LogWarn("Failed to parse inbound routing message");
return false;
}
m_LastRecvMessage = r->Now();
return true;
}
bool
Path::HandleUpdateExitVerifyMessage(
const routing::UpdateExitVerifyMessage* msg, AbstractRouter* r)
{
(void)r;
if(m_UpdateExitTX && msg->T == m_UpdateExitTX)
{
if(m_ExitUpdated)
return m_ExitUpdated(this);
}
if(m_CloseExitTX && msg->T == m_CloseExitTX)
{
if(m_ExitClosed)
return m_ExitClosed(this);
}
return false;
}
bool
Path::SendRoutingMessage(const routing::IMessage* msg, AbstractRouter* r)
{
std::array< byte_t, MAX_LINK_MSG_SIZE / 2 > tmp;
llarp_buffer_t buf(tmp);
// should help prevent bad paths with uninitialized members
// FIXME: Why would we get uninitialized IMessages?
if(msg->version != LLARP_PROTO_VERSION)
return false;
if(!msg->BEncode(&buf))
{
LogError("Bencode failed");
DumpBuffer(buf);
return false;
}
// make nonce
TunnelNonce N;
N.Randomize();
buf.sz = buf.cur - buf.base;
// pad smaller messages
if(buf.sz < MESSAGE_PAD_SIZE)
{
// randomize padding
r->crypto()->randbytes(buf.cur, MESSAGE_PAD_SIZE - buf.sz);
buf.sz = MESSAGE_PAD_SIZE;
}
buf.cur = buf.base;
return HandleUpstream(buf, N, r);
}
bool
Path::HandlePathTransferMessage(__attribute__((unused))
const routing::PathTransferMessage* msg,
__attribute__((unused)) AbstractRouter* r)
{
LogWarn("unwarranted path transfer message on tx=", TXID(),
" rx=", RXID());
return false;
}
bool
Path::HandleDataDiscardMessage(const routing::DataDiscardMessage* msg,
AbstractRouter* r)
{
MarkActive(r->Now());
if(m_DropHandler)
return m_DropHandler(this, msg->P, msg->S);
return true;
}
bool
Path::HandlePathConfirmMessage(__attribute__((unused))
const routing::PathConfirmMessage* msg,
AbstractRouter* r)
{
auto now = r->Now();
if(_status == ePathBuilding)
{
// finish initializing introduction
intro.expiresAt = buildStarted + hops[0].lifetime;
r->routerProfiling().MarkPathSuccess(this);
// persist session with upstream router until the path is done
r->PersistSessionUntil(Upstream(), intro.expiresAt);
MarkActive(now);
// send path latency test
routing::PathLatencyMessage latency;
latency.T = randint();
m_LastLatencyTestID = latency.T;
m_LastLatencyTestTime = now;
return SendRoutingMessage(&latency, r);
}
LogWarn("got unwarranted path confirm message on tx=", RXID(),
" rx=", RXID());
return false;
}
bool
Path::HandleHiddenServiceFrame(const service::ProtocolFrame* frame)
{
MarkActive(m_PathSet->Now());
return m_DataHandler && m_DataHandler(this, frame);
}
bool
Path::HandlePathLatencyMessage(const routing::PathLatencyMessage* msg,
AbstractRouter* r)
{
auto now = r->Now();
MarkActive(now);
if(msg->L == m_LastLatencyTestID)
{
intro.latency = now - m_LastLatencyTestTime;
m_LastLatencyTestID = 0;
EnterState(ePathEstablished, now);
if(m_BuiltHook)
m_BuiltHook(this);
m_BuiltHook = nullptr;
return true;
}
else
{
LogWarn("unwarranted path latency message via ", Upstream());
return false;
}
}
bool
Path::HandleDHTMessage(const dht::IMessage* msg, AbstractRouter* r)
{
routing::DHTMessage reply;
if(!msg->HandleMessage(r->dht(), reply.M))
return false;
MarkActive(r->Now());
if(reply.M.size())
return SendRoutingMessage(&reply, r);
return true;
}
bool
Path::HandleCloseExitMessage(const routing::CloseExitMessage* msg,
AbstractRouter* r)
{
/// allows exits to close from their end
if(SupportsAnyRoles(ePathRoleExit | ePathRoleSVC))
{
if(msg->Verify(r->crypto(), EndpointPubKey()))
{
LogInfo(Name(), " had its exit closed");
_role &= ~ePathRoleExit;
return true;
}
else
LogError(Name(), " CXM from exit with bad signature");
}
else
LogError(Name(), " unwarranted CXM");
return false;
}
bool
Path::SendExitRequest(const routing::ObtainExitMessage* msg,
AbstractRouter* r)
{
LogInfo(Name(), " sending exit request to ", Endpoint());
m_ExitObtainTX = msg->T;
return SendRoutingMessage(msg, r);
}
bool
Path::SendExitClose(const routing::CloseExitMessage* msg, AbstractRouter* r)
{
LogInfo(Name(), " closing exit to ", Endpoint());
// mark as not exit anymore
_role &= ~ePathRoleExit;
return SendRoutingMessage(msg, r);
}
bool
Path::HandleObtainExitMessage(const routing::ObtainExitMessage* msg,
AbstractRouter* r)
{
(void)msg;
(void)r;
LogError(Name(), " got unwarranted OXM");
return false;
}
bool
Path::HandleUpdateExitMessage(const routing::UpdateExitMessage* msg,
AbstractRouter* r)
{
(void)msg;
(void)r;
LogError(Name(), " got unwarranted UXM");
return false;
}
bool
Path::HandleRejectExitMessage(const routing::RejectExitMessage* msg,
AbstractRouter* r)
{
if(m_ExitObtainTX && msg->T == m_ExitObtainTX)
{
if(!msg->Verify(r->crypto(), EndpointPubKey()))
{
LogError(Name(), "RXM invalid signature");
return false;
}
LogInfo(Name(), " ", Endpoint(), " Rejected exit");
MarkActive(r->Now());
return InformExitResult(msg->B);
}
LogError(Name(), " got unwarranted RXM");
return false;
}
bool
Path::HandleGrantExitMessage(const routing::GrantExitMessage* msg,
AbstractRouter* r)
{
if(m_ExitObtainTX && msg->T == m_ExitObtainTX)
{
if(!msg->Verify(r->crypto(), EndpointPubKey()))
{
LogError(Name(), " GXM signature failed");
return false;
}
// we now can send exit traffic
_role |= ePathRoleExit;
LogInfo(Name(), " ", Endpoint(), " Granted exit");
MarkActive(r->Now());
return InformExitResult(0);
}
LogError(Name(), " got unwarranted GXM");
return false;
}
bool
Path::InformExitResult(llarp_time_t B)
{
bool result = true;
for(const auto& hook : m_ObtainedExitHooks)
result &= hook(this, B);
m_ObtainedExitHooks.clear();
return result;
}
bool
Path::HandleTransferTrafficMessage(
const routing::TransferTrafficMessage* msg, AbstractRouter* r)
{
// check if we can handle exit data
if(!SupportsAnyRoles(ePathRoleExit | ePathRoleSVC))
return false;
MarkActive(r->Now());
// handle traffic if we have a handler
if(!m_ExitTrafficHandler)
return false;
bool sent = msg->X.size() > 0;
for(const auto& pkt : msg->X)
{
if(pkt.size() <= 8)
return false;
uint64_t counter = bufbe64toh(pkt.data());
m_ExitTrafficHandler(
this, llarp_buffer_t(pkt.data() + 8, pkt.size() - 8), counter);
}
return sent;
}
} // namespace path
} // namespace llarp