#include #include #include #include #include #include #include #include #include #include #include namespace llarp { struct AsyncPathKeyExchangeContext : std::enable_shared_from_this< AsyncPathKeyExchangeContext > { using Path_t = path::Path_ptr; using PathSet_t = path::PathSet_ptr; PathSet_t pathset = nullptr; Path_t path = nullptr; using Handler = std::function< void(std::shared_ptr< AsyncPathKeyExchangeContext >) >; Handler result; size_t idx = 0; AbstractRouter* router = nullptr; std::shared_ptr< thread::ThreadPool > worker; std::shared_ptr< Logic > logic; LR_CommitMessage LRCM; void GenerateNextKey() { // current hop auto& hop = path->hops[idx]; auto& frame = LRCM.frames[idx]; auto crypto = CryptoManager::instance(); // generate key crypto->encryption_keygen(hop.commkey); hop.nonce.Randomize(); // do key exchange if(!crypto->dh_client(hop.shared, hop.rc.enckey, hop.commkey, hop.nonce)) { LogError(pathset->Name(), " Failed to generate shared key for path build"); return; } // generate nonceXOR valueself->hop->pathKey crypto->shorthash(hop.nonceXOR, llarp_buffer_t(hop.shared)); ++idx; bool isFarthestHop = idx == path->hops.size(); LR_CommitRecord record; if(isFarthestHop) { hop.upstream = hop.rc.pubkey; } else { hop.upstream = path->hops[idx].rc.pubkey; record.nextRC = std::make_unique< RouterContact >(path->hops[idx].rc); } // build record record.lifetime = path::default_lifetime; record.version = LLARP_PROTO_VERSION; record.txid = hop.txID; record.rxid = hop.rxID; record.tunnelNonce = hop.nonce; record.nextHop = hop.upstream; record.commkey = seckey_topublic(hop.commkey); llarp_buffer_t buf(frame.data(), frame.size()); buf.cur = buf.base + EncryptedFrameOverheadSize; // encode record if(!record.BEncode(&buf)) { // failed to encode? LogError(pathset->Name(), " Failed to generate Commit Record"); DumpBuffer(buf); return; } // use ephemeral keypair for frame SecretKey framekey; crypto->encryption_keygen(framekey); if(!frame.EncryptInPlace(framekey, hop.rc.enckey)) { LogError(pathset->Name(), " Failed to encrypt LRCR"); return; } if(isFarthestHop) { // farthest hop // TODO: encrypt junk frames because our public keys are not eligator logic->queue_func(std::bind(result, shared_from_this())); } else { // next hop worker->addJob(std::bind(&AsyncPathKeyExchangeContext::GenerateNextKey, shared_from_this())); } } /// Generate all keys asynchronously and call handler when done void AsyncGenerateKeys(Path_t p, std::shared_ptr< Logic > l, std::shared_ptr< thread::ThreadPool > pool, Handler func) { path = p; logic = l; result = func; worker = pool; for(size_t i = 0; i < path::max_len; ++i) { LRCM.frames[i].Randomize(); } pool->addJob(std::bind(&AsyncPathKeyExchangeContext::GenerateNextKey, shared_from_this())); } }; static void PathBuilderKeysGenerated(std::shared_ptr< AsyncPathKeyExchangeContext > ctx) { if(!ctx->pathset->IsStopped()) { const RouterID remote = ctx->path->Upstream(); const ILinkMessage* msg = &ctx->LRCM; if(ctx->router->SendToOrQueue(remote, msg)) { // persist session with router until this path is done ctx->router->PersistSessionUntil(remote, ctx->path->ExpireTime()); // add own path ctx->router->pathContext().AddOwnPath(ctx->pathset, ctx->path); ctx->pathset->PathBuildStarted(ctx->path); } else LogError(ctx->pathset->Name(), " failed to send LRCM to ", remote); } } namespace path { Builder::Builder(AbstractRouter* p_router, size_t pathNum, size_t hops) : path::PathSet(pathNum), _run(true), m_router(p_router), numHops(hops) { CryptoManager::instance()->encryption_keygen(enckey); } void Builder::ResetInternalState() { buildIntervalLimit = MIN_PATH_BUILD_INTERVAL; lastBuild = 0; } void Builder::Tick(llarp_time_t now) { ExpirePaths(now); if(ShouldBuildMore(now)) BuildOne(); TickPaths(now, m_router); if(m_BuildStats.attempts > 50) { if(m_BuildStats.SuccsessRatio() <= BuildStats::MinGoodRatio && now - m_LastWarn > 5000) { LogWarn(Name(), " has a low path build success. ", m_BuildStats); m_LastWarn = now; } } } util::StatusObject Builder::ExtractStatus() const { util::StatusObject obj{{"buildStats", m_BuildStats.ExtractStatus()}, {"numHops", uint64_t(numHops)}, {"numPaths", uint64_t(numPaths)}}; std::transform(m_Paths.begin(), m_Paths.end(), std::back_inserter(obj["paths"]), [](const auto& item) -> util::StatusObject { return item.second->ExtractStatus(); }); return obj; } bool Builder::SelectHop(llarp_nodedb* db, const std::set< RouterID >& exclude, RouterContact& cur, size_t hop, PathRole roles) { (void)roles; size_t tries = 10; if(hop == 0) { if(m_router->NumberOfConnectedRouters() == 0) { // persist connection m_router->ConnectToRandomRouters(1); return false; } bool got = false; m_router->ForEachPeer( [&](const ILinkSession* s, bool isOutbound) { if(s && s->IsEstablished() && isOutbound && !got) { const RouterContact rc = s->GetRemoteRC(); #ifdef TESTNET if(got || exclude.count(rc.pubkey)) #else if(got || exclude.count(rc.pubkey) || m_router->IsBootstrapNode(rc.pubkey)) #endif return; cur = rc; got = true; } }, true); return got; } do { cur.Clear(); --tries; std::set< RouterID > excluding = exclude; if(db->select_random_hop_excluding(cur, excluding)) { excluding.insert(cur.pubkey); if(!m_router->routerProfiling().IsBadForPath(cur.pubkey)) return true; } } while(tries > 0); return false; } bool Builder::Stop() { _run = false; return true; } bool Builder::IsStopped() const { return !_run.load(); } bool Builder::ShouldRemove() const { return IsStopped(); } const SecretKey& Builder::GetTunnelEncryptionSecretKey() const { return enckey; } bool Builder::BuildCooldownHit(llarp_time_t now) const { return now < lastBuild || now - lastBuild < buildIntervalLimit; } bool Builder::ShouldBuildMore(llarp_time_t now) const { if(IsStopped()) return false; return PathSet::ShouldBuildMore(now) && !BuildCooldownHit(now); } void Builder::BuildOne(PathRole roles) { std::vector< RouterContact > hops(numHops); if(SelectHops(m_router->nodedb(), hops, roles)) Build(hops, roles); } bool Builder::UrgentBuild(llarp_time_t) const { return buildIntervalLimit > MIN_PATH_BUILD_INTERVAL * 4; } bool Builder::DoUrgentBuildAlignedTo(const RouterID remote, std::vector< RouterContact >& hops) { const auto aligned = m_router->pathContext().FindOwnedPathsWithEndpoint(remote); /// pick the lowest latency path that aligns to remote /// note: peer exhaustion is made worse happen here Path_ptr p; llarp_time_t min = std::numeric_limits< llarp_time_t >::max(); for(const auto& path : aligned) { if(path->intro.latency < min && path->hops.size() == numHops) { p = path; min = path->intro.latency; } } if(p) { for(const auto& hop : p->hops) { if(hop.rc.pubkey.IsZero()) return false; hops.emplace_back(hop.rc); } } return true; } bool Builder::DoBuildAlignedTo(const RouterID remote, std::vector< RouterContact >& hops) { std::set< RouterID > routers{remote}; hops.resize(numHops); auto nodedb = m_router->nodedb(); for(size_t idx = 0; idx < hops.size(); idx++) { hops[idx].Clear(); if(idx == numHops - 1) { // last hop if(!nodedb->Get(remote, hops[idx])) { m_router->LookupRouter(remote, nullptr); return false; } } else { if(!SelectHop(nodedb, routers, hops[idx], idx, path::ePathRoleAny)) { return false; } } if(hops[idx].pubkey.IsZero()) return false; routers.insert(hops[idx].pubkey); } return true; } bool Builder::BuildOneAlignedTo(const RouterID remote) { std::vector< RouterContact > hops; /// if we really need this path build it "dangerously" if(UrgentBuild(m_router->Now())) { if(!DoUrgentBuildAlignedTo(remote, hops)) { return false; } } if(hops.empty()) { if(!DoBuildAlignedTo(remote, hops)) { return false; } } LogInfo(Name(), " building path to ", remote); Build(hops); return true; } bool Builder::SelectHops(llarp_nodedb* nodedb, std::vector< RouterContact >& hops, PathRole roles) { std::set< RouterID > exclude; for(size_t idx = 0; idx < hops.size(); ++idx) { hops[idx].Clear(); size_t tries = 32; while(tries > 0 && !SelectHop(nodedb, exclude, hops[idx], idx, roles)) { --tries; } if(tries == 0 || hops[idx].pubkey.IsZero()) { LogWarn(Name(), " failed to select hop ", idx); return false; } exclude.emplace(hops[idx].pubkey); } return true; } llarp_time_t Builder::Now() const { return m_router->Now(); } void Builder::Build(const std::vector< RouterContact >& hops, PathRole roles) { if(IsStopped()) return; lastBuild = Now(); // async generate keys auto ctx = std::make_shared< AsyncPathKeyExchangeContext >(); ctx->router = m_router; ctx->pathset = GetSelf(); auto path = std::make_shared< path::Path >(hops, this, roles); LogInfo(Name(), " build ", path->HopsString()); path->SetBuildResultHook( [this](Path_ptr p) { this->HandlePathBuilt(p); }); ctx->AsyncGenerateKeys(path, m_router->logic(), m_router->threadpool(), &PathBuilderKeysGenerated); } void Builder::HandlePathBuilt(Path_ptr p) { buildIntervalLimit = MIN_PATH_BUILD_INTERVAL; m_router->routerProfiling().MarkPathSuccess(p.get()); LogInfo(p->Name(), " built latency=", p->intro.latency); m_BuildStats.success++; } void Builder::HandlePathBuildFailed(Path_ptr p) { m_router->routerProfiling().MarkPathFail(p.get()); PathSet::HandlePathBuildFailed(p); DoPathBuildBackoff(); } void Builder::DoPathBuildBackoff() { // linear backoff static constexpr llarp_time_t MaxBuildInterval = 30 * 1000; buildIntervalLimit = std::min( MIN_PATH_BUILD_INTERVAL + buildIntervalLimit, MaxBuildInterval); LogWarn(Name(), " build interval is now ", buildIntervalLimit); } void Builder::HandlePathBuildTimeout(Path_ptr p) { m_router->routerProfiling().MarkPathFail(p.get()); PathSet::HandlePathBuildTimeout(p); DoPathBuildBackoff(); } void Builder::ManualRebuild(size_t num, PathRole roles) { LogDebug(Name(), " manual rebuild ", num); while(num--) BuildOne(roles); } } // namespace path } // namespace llarp