#include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace llarp { namespace path { std::ostream& TransitHopInfo::print(std::ostream& stream, int level, int spaces) const { Printer printer(stream, level, spaces); printer.printAttribute("tx", txID); printer.printAttribute("rx", rxID); printer.printAttribute("upstream", upstream); printer.printAttribute("downstream", downstream); return stream; } TransitHop::TransitHop() { } bool TransitHop::Expired(llarp_time_t now) const { return now >= ExpireTime(); } llarp_time_t TransitHop::ExpireTime() const { return started + lifetime; } TransitHopInfo::TransitHopInfo(const RouterID& down, const LR_CommitRecord& record) : txID(record.txid) , rxID(record.rxid) , upstream(record.nextHop) , downstream(down) { } bool TransitHop::SendRoutingMessage(const routing::IMessage& msg, AbstractRouter* r) { if(!IsEndpoint(r->pubkey())) return false; std::array< byte_t, MAX_LINK_MSG_SIZE - 128 > tmp; llarp_buffer_t buf(tmp); if(!msg.BEncode(&buf)) { llarp::LogError("failed to encode routing message"); return false; } TunnelNonce N; N.Randomize(); buf.sz = buf.cur - buf.base; // pad to nearest MESSAGE_PAD_SIZE bytes auto dlt = buf.sz % pad_size; if(dlt) { dlt = pad_size - dlt; // randomize padding CryptoManager::instance()->randbytes(buf.cur, dlt); buf.sz += dlt; } buf.cur = buf.base; return HandleDownstream(buf, N, r); } bool TransitHop::HandleDownstream(const llarp_buffer_t& buf, const TunnelNonce& Y, AbstractRouter* r) { RelayDownstreamMessage msg; msg.pathid = info.rxID; msg.Y = Y ^ nonceXOR; CryptoManager::instance()->xchacha20(buf, pathKey, Y); msg.X = buf; llarp::LogDebug("relay ", msg.X.size(), " bytes downstream from ", info.upstream, " to ", info.downstream); return r->SendToOrQueue(info.downstream, &msg); } bool TransitHop::HandleUpstream(const llarp_buffer_t& buf, const TunnelNonce& Y, AbstractRouter* r) { CryptoManager::instance()->xchacha20(buf, pathKey, Y); if(IsEndpoint(r->pubkey())) { m_LastActivity = r->Now(); return r->ParseRoutingMessageBuffer(buf, this, info.rxID); } else { RelayUpstreamMessage msg; msg.pathid = info.txID; msg.Y = Y ^ nonceXOR; msg.X = buf; llarp::LogDebug("relay ", msg.X.size(), " bytes upstream from ", info.downstream, " to ", info.upstream); return r->SendToOrQueue(info.upstream, &msg); } } bool TransitHop::HandleDHTMessage(const llarp::dht::IMessage& msg, AbstractRouter* r) { return r->dht()->impl->RelayRequestForPath(info.rxID, msg); } bool TransitHop::HandlePathLatencyMessage( const llarp::routing::PathLatencyMessage& msg, AbstractRouter* r) { llarp::routing::PathLatencyMessage reply; reply.L = msg.T; return SendRoutingMessage(reply, r); } bool TransitHop::HandlePathConfirmMessage( __attribute__((unused)) const llarp::routing::PathConfirmMessage& msg, __attribute__((unused)) AbstractRouter* r) { llarp::LogWarn("unwarranted path confirm message on ", info); return false; } bool TransitHop::HandleDataDiscardMessage( __attribute__((unused)) const llarp::routing::DataDiscardMessage& msg, __attribute__((unused)) AbstractRouter* r) { llarp::LogWarn("unwarranted path data discard message on ", info); return false; } bool TransitHop::HandleObtainExitMessage( const llarp::routing::ObtainExitMessage& msg, AbstractRouter* r) { if(msg.Verify() && r->exitContext().ObtainNewExit(msg.I, info.rxID, msg.E != 0)) { llarp::routing::GrantExitMessage grant; grant.S = NextSeqNo(); grant.T = msg.T; if(!grant.Sign(r->identity())) { llarp::LogError("Failed to sign grant exit message"); return false; } return SendRoutingMessage(grant, r); } // TODO: exponential backoff // TODO: rejected policies llarp::routing::RejectExitMessage reject; reject.S = NextSeqNo(); reject.T = msg.T; if(!reject.Sign(r->identity())) { llarp::LogError("Failed to sign reject exit message"); return false; } return SendRoutingMessage(reject, r); } bool TransitHop::HandleCloseExitMessage( const llarp::routing::CloseExitMessage& msg, AbstractRouter* r) { const llarp::routing::DataDiscardMessage discard(info.rxID, msg.S); auto ep = r->exitContext().FindEndpointForPath(info.rxID); if(ep && msg.Verify(ep->PubKey())) { llarp::routing::CloseExitMessage reply; reply.Y = msg.Y; reply.S = NextSeqNo(); if(reply.Sign(r->identity())) { if(SendRoutingMessage(reply, r)) { r->PumpLL(); ep->Close(); return true; } } } return SendRoutingMessage(discard, r); } bool TransitHop::HandleUpdateExitVerifyMessage( const llarp::routing::UpdateExitVerifyMessage& msg, AbstractRouter* r) { (void)msg; (void)r; llarp::LogError("unwarranted exit verify on ", info); return false; } bool TransitHop::HandleUpdateExitMessage( const llarp::routing::UpdateExitMessage& msg, AbstractRouter* r) { auto ep = r->exitContext().FindEndpointForPath(msg.P); if(ep) { if(!msg.Verify(ep->PubKey())) return false; if(ep->UpdateLocalPath(info.rxID)) { llarp::routing::UpdateExitVerifyMessage reply; reply.T = msg.T; reply.S = NextSeqNo(); return SendRoutingMessage(reply, r); } } // on fail tell message was discarded llarp::routing::DataDiscardMessage discard(info.rxID, msg.S); return SendRoutingMessage(discard, r); } bool TransitHop::HandleRejectExitMessage( const llarp::routing::RejectExitMessage& msg, AbstractRouter* r) { (void)msg; (void)r; llarp::LogError(info, " got unwarranted RXM"); return false; } bool TransitHop::HandleGrantExitMessage( const llarp::routing::GrantExitMessage& msg, AbstractRouter* r) { (void)msg; (void)r; llarp::LogError(info, " got unwarranted GXM"); return false; } bool TransitHop::HandleTransferTrafficMessage( const llarp::routing::TransferTrafficMessage& msg, AbstractRouter* r) { auto endpoint = r->exitContext().FindEndpointForPath(info.rxID); if(endpoint) { bool sent = true; for(const auto& pkt : msg.X) { // check short packet buffer if(pkt.size() <= 8) continue; uint64_t counter = bufbe64toh(pkt.data()); sent &= endpoint->QueueOutboundTraffic( ManagedBuffer(llarp_buffer_t(pkt.data() + 8, pkt.size() - 8)), counter); } return sent; } else llarp::LogError("No exit endpoint on ", info); // discarded llarp::routing::DataDiscardMessage discard(info.rxID, msg.S); return SendRoutingMessage(discard, r); } bool TransitHop::HandlePathTransferMessage( const llarp::routing::PathTransferMessage& msg, AbstractRouter* r) { auto path = r->pathContext().GetPathForTransfer(msg.P); llarp::routing::DataDiscardMessage discarded(msg.P, msg.S); if(path == nullptr || msg.T.F != info.txID) { return SendRoutingMessage(discarded, r); } std::array< byte_t, service::MAX_PROTOCOL_MESSAGE_SIZE > tmp; llarp_buffer_t buf(tmp); if(!msg.T.BEncode(&buf)) { llarp::LogWarn(info, " failed to transfer data message, encode failed"); return SendRoutingMessage(discarded, r); } // rewind buf.sz = buf.cur - buf.base; buf.cur = buf.base; // send if(path->HandleDownstream(buf, msg.Y, r)) return true; return SendRoutingMessage(discarded, r); } std::ostream& TransitHop::print(std::ostream& stream, int level, int spaces) const { Printer printer(stream, level, spaces); printer.printAttribute("TransitHop", info); printer.printAttribute("started", started); printer.printAttribute("lifetime", lifetime); return stream; } } // namespace path } // namespace llarp