#include #include #include #include #include #include #include #include #include #include #include #include #include namespace llarp { namespace path { std::ostream& TransitHopInfo::print(std::ostream& stream, int level, int spaces) const { Printer printer(stream, level, spaces); printer.printAttribute("tx", txID); printer.printAttribute("rx", rxID); printer.printAttribute("upstream", upstream); printer.printAttribute("downstream", downstream); return stream; } PathContext::PathContext(AbstractRouter* router) : m_Router(router), m_AllowTransit(false) { } PathContext::~PathContext() { } void PathContext::AllowTransit() { m_AllowTransit = true; } bool PathContext::AllowingTransit() const { return m_AllowTransit; } llarp_threadpool* PathContext::Worker() { return m_Router->threadpool(); } Crypto* PathContext::Crypto() { return m_Router->crypto(); } Logic* PathContext::Logic() { return m_Router->logic(); } const SecretKey& PathContext::EncryptionSecretKey() { return m_Router->encryption(); } bool PathContext::HopIsUs(const RouterID& k) const { return std::equal(m_Router->pubkey(), m_Router->pubkey() + PUBKEYSIZE, k.begin()); } bool PathContext::ForwardLRCM(const RouterID& nextHop, const std::array< EncryptedFrame, 8 >& frames) { LogDebug("forwarding LRCM to ", nextHop); LR_CommitMessage msg; msg.frames = frames; return m_Router->SendToOrQueue(nextHop, &msg); } template < typename Map_t, typename Key_t, typename CheckValue_t, typename GetFunc_t > IHopHandler* MapGet(Map_t& map, const Key_t& k, CheckValue_t check, GetFunc_t get) { util::Lock lock(&map.first); auto range = map.second.equal_range(k); for(auto i = range.first; i != range.second; ++i) { if(check(i->second)) return get(i->second); } return nullptr; } template < typename Map_t, typename Key_t, typename CheckValue_t > bool MapHas(Map_t& map, const Key_t& k, CheckValue_t check) { util::Lock lock(&map.first); auto range = map.second.equal_range(k); for(auto i = range.first; i != range.second; ++i) { if(check(i->second)) return true; } return false; } template < typename Map_t, typename Key_t, typename Value_t > void MapPut(Map_t& map, const Key_t& k, const Value_t& v) { util::Lock lock(&map.first); map.second.emplace(k, v); } template < typename Map_t, typename Visit_t > void MapIter(Map_t& map, Visit_t v) { util::Lock lock(map.first); for(const auto& item : map.second) v(item); } template < typename Map_t, typename Key_t, typename Check_t > void MapDel(Map_t& map, const Key_t& k, Check_t check) { util::Lock lock(map.first); auto range = map.second.equal_range(k); for(auto i = range.first; i != range.second;) { if(check(i->second)) i = map.second.erase(i); else ++i; } } void PathContext::AddOwnPath(PathSet* set, Path* path) { set->AddPath(path); MapPut(m_OurPaths, path->TXID(), set); MapPut(m_OurPaths, path->RXID(), set); } bool PathContext::HasTransitHop(const TransitHopInfo& info) { return MapHas(m_TransitPaths, info.txID, [info](const std::shared_ptr< TransitHop >& hop) -> bool { return info == hop->info; }); } IHopHandler* PathContext::GetByUpstream(const RouterID& remote, const PathID_t& id) { auto own = MapGet(m_OurPaths, id, [](__attribute__((unused)) const PathSet* s) -> bool { // TODO: is this right? return true; }, [remote, id](PathSet* p) -> IHopHandler* { return p->GetByUpstream(remote, id); }); if(own) return own; return MapGet(m_TransitPaths, id, [remote](const std::shared_ptr< TransitHop >& hop) -> bool { return hop->info.upstream == remote; }, [](const std::shared_ptr< TransitHop >& h) -> IHopHandler* { return h.get(); }); } bool PathContext::TransitHopPreviousIsRouter(const PathID_t& path, const RouterID& otherRouter) { util::Lock lock(&m_TransitPaths.first); auto itr = m_TransitPaths.second.find(path); if(itr == m_TransitPaths.second.end()) return false; return itr->second->info.downstream == otherRouter; } IHopHandler* PathContext::GetByDownstream(const RouterID& remote, const PathID_t& id) { return MapGet(m_TransitPaths, id, [remote](const std::shared_ptr< TransitHop >& hop) -> bool { return hop->info.downstream == remote; }, [](const std::shared_ptr< TransitHop >& h) -> IHopHandler* { return h.get(); }); } PathSet* PathContext::GetLocalPathSet(const PathID_t& id) { auto& map = m_OurPaths; util::Lock lock(&map.first); auto itr = map.second.find(id); if(itr != map.second.end()) { return itr->second; } return nullptr; } const byte_t* PathContext::OurRouterID() const { return m_Router->pubkey(); } AbstractRouter* PathContext::Router() { return m_Router; } IHopHandler* PathContext::GetPathForTransfer(const PathID_t& id) { RouterID us(OurRouterID()); auto& map = m_TransitPaths; { util::Lock lock(&map.first); auto range = map.second.equal_range(id); for(auto i = range.first; i != range.second; ++i) { if(i->second->info.upstream == us) return i->second.get(); } } return nullptr; } void PathContext::PutTransitHop(std::shared_ptr< TransitHop > hop) { MapPut(m_TransitPaths, hop->info.txID, hop); MapPut(m_TransitPaths, hop->info.rxID, hop); } void PathContext::ExpirePaths(llarp_time_t now) { util::Lock lock(&m_TransitPaths.first); auto& map = m_TransitPaths.second; auto itr = map.begin(); while(itr != map.end()) { if(itr->second->Expired(now)) { itr = map.erase(itr); } else ++itr; } for(auto& builder : m_PathBuilders) { if(builder) builder->ExpirePaths(now); } } void PathContext::BuildPaths(llarp_time_t now) { for(auto& builder : m_PathBuilders) { if(builder->ShouldBuildMore(now)) { builder->BuildOne(); } } } void PathContext::TickPaths(llarp_time_t now) { for(auto& builder : m_PathBuilders) builder->Tick(now, m_Router); } routing::IMessageHandler* PathContext::GetHandler(const PathID_t& id) { routing::IMessageHandler* h = nullptr; auto pathset = GetLocalPathSet(id); if(pathset) { h = pathset->GetPathByID(id); } if(h) return h; RouterID us(OurRouterID()); auto& map = m_TransitPaths; { util::Lock lock(&map.first); auto range = map.second.equal_range(id); for(auto i = range.first; i != range.second; ++i) { if(i->second->info.upstream == us) return i->second.get(); } } return nullptr; } void PathContext::AddPathBuilder(Builder* ctx) { m_PathBuilders.push_back(ctx); } void PathContext::RemovePathSet(PathSet* set) { util::Lock lock(&m_OurPaths.first); auto& map = m_OurPaths.second; auto itr = map.begin(); while(itr != map.end()) { if(itr->second == set) itr = map.erase(itr); else ++itr; } } void PathContext::RemovePathBuilder(Builder* ctx) { m_PathBuilders.remove(ctx); RemovePathSet(ctx); } std::ostream& TransitHop::print(std::ostream& stream, int level, int spaces) const { Printer printer(stream, level, spaces); printer.printAttribute("TransitHop", info); printer.printAttribute("started", started); printer.printAttribute("lifetime", lifetime); return stream; } PathHopConfig::PathHopConfig() { } PathHopConfig::~PathHopConfig() { } Path::Path(const std::vector< RouterContact >& h, PathSet* parent, PathRole startingRoles) : m_PathSet(parent), _role(startingRoles) { hops.resize(h.size()); size_t hsz = h.size(); for(size_t idx = 0; idx < hsz; ++idx) { hops[idx].rc = h[idx]; hops[idx].txID.Randomize(); hops[idx].rxID.Randomize(); } for(size_t idx = 0; idx < hsz - 1; ++idx) { hops[idx].txID = hops[idx + 1].rxID; } // initialize parts of the introduction intro.router = hops[hsz - 1].rc.pubkey; intro.pathID = hops[hsz - 1].txID; EnterState(ePathBuilding, parent->Now()); } void Path::SetBuildResultHook(BuildResultHookFunc func) { m_BuiltHook = func; } RouterID Path::Endpoint() const { return hops[hops.size() - 1].rc.pubkey; } PubKey Path::EndpointPubKey() const { return hops[hops.size() - 1].rc.pubkey; } PathID_t Path::TXID() const { return hops[0].txID; } PathID_t Path::RXID() const { return hops[0].rxID; } bool Path::IsReady() const { return intro.latency > 0 && _status == ePathEstablished; } bool Path::IsEndpoint(const RouterID& r, const PathID_t& id) const { return hops[hops.size() - 1].rc.pubkey == r && hops[hops.size() - 1].txID == id; } RouterID Path::Upstream() const { return hops[0].rc.pubkey; } std::string Path::HopsString() const { std::stringstream ss; for(const auto& hop : hops) ss << RouterID(hop.rc.pubkey) << " -> "; return ss.str(); } void Path::EnterState(PathStatus st, llarp_time_t now) { if(st == ePathTimeout && _status == ePathBuilding) { m_PathSet->HandlePathBuildTimeout(this); } else if(st == ePathBuilding) { LogInfo("path ", Name(), " is building"); buildStarted = now; } else if(st == ePathEstablished && _status == ePathBuilding) { LogInfo("path ", Name(), " is built, took ", now - buildStarted, " ms"); } else if(st == ePathTimeout && _status == ePathEstablished) { LogInfo("path ", Name(), " died"); _status = st; m_PathSet->HandlePathDied(this); } _status = st; } util::StatusObject PathHopConfig::ExtractStatus() const { util::StatusObject obj{{"lifetime", lifetime}, {"router", rc.pubkey.ToHex()}, {"txid", txID.ToHex()}, {"rxid", rxID.ToHex()}}; return obj; } util::StatusObject Path::ExtractStatus() const { auto now = llarp::time_now_ms(); util::StatusObject obj{{"intro", intro.ExtractStatus()}, {"lastRecvMsg", m_LastRecvMessage}, {"lastLatencyTest", m_LastLatencyTestTime}, {"buildStarted", buildStarted}, {"expired", Expired(now)}, {"expiresSoon", ExpiresSoon(now)}, {"expiresAt", ExpireTime()}, {"ready", IsReady()}, {"hasExit", SupportsAnyRoles(ePathRoleExit)}}; std::vector< util::StatusObject > hopsObj; std::transform(hops.begin(), hops.end(), std::back_inserter(hopsObj), [](const auto& hop) -> util::StatusObject { return hop.ExtractStatus(); }); obj.Put("hops", hopsObj); switch(_status) { case ePathBuilding: obj.Put("status", "building"); break; case ePathEstablished: obj.Put("status", "established"); break; case ePathTimeout: obj.Put("status", "timeout"); break; case ePathExpired: obj.Put("status", "expired"); break; default: obj.Put("status", "unknown"); break; } return obj; } void Path::Tick(llarp_time_t now, AbstractRouter* r) { if(Expired(now)) return; if(_status == ePathBuilding) { if(now >= buildStarted) { auto dlt = now - buildStarted; if(dlt >= path::build_timeout) { r->routerProfiling().MarkPathFail(this); EnterState(ePathTimeout, now); return; } } } // check to see if this path is dead if(_status == ePathEstablished) { auto dlt = now - m_LastLatencyTestTime; if(dlt > path::latency_interval && m_LastLatencyTestID == 0) { routing::PathLatencyMessage latency; latency.T = randint(); m_LastLatencyTestID = latency.T; m_LastLatencyTestTime = now; SendRoutingMessage(&latency, r); return; } if(SupportsAnyRoles(ePathRoleExit | ePathRoleSVC)) { if(m_LastRecvMessage && now > m_LastRecvMessage && now - m_LastRecvMessage > path::alive_timeout) { // TODO: send close exit message // r->routerProfiling().MarkPathFail(this); // EnterState(ePathTimeout, now); return; } } if(m_LastRecvMessage && now > m_LastRecvMessage) { auto dlt = now - m_LastRecvMessage; if(m_CheckForDead && m_CheckForDead(this, dlt)) { r->routerProfiling().MarkPathFail(this); EnterState(ePathTimeout, now); } } else if(dlt >= path::alive_timeout && m_LastRecvMessage == 0) { r->routerProfiling().MarkPathFail(this); EnterState(ePathTimeout, now); } } } bool Path::HandleUpstream(const llarp_buffer_t& buf, const TunnelNonce& Y, AbstractRouter* r) { TunnelNonce n = Y; for(const auto& hop : hops) { r->crypto()->xchacha20(buf, hop.shared, n); n ^= hop.nonceXOR; } RelayUpstreamMessage msg; msg.X = buf; msg.Y = Y; msg.pathid = TXID(); if(r->SendToOrQueue(Upstream(), &msg)) return true; LogError("send to ", Upstream(), " failed"); return false; } bool Path::Expired(llarp_time_t now) const { if(_status == ePathEstablished) return now >= ExpireTime(); else if(_status == ePathBuilding) return false; else return true; } std::string Path::Name() const { std::stringstream ss; ss << "TX=" << TXID() << " RX=" << RXID(); if(m_PathSet) ss << " on " << m_PathSet->Name(); return ss.str(); } bool Path::HandleDownstream(const llarp_buffer_t& buf, const TunnelNonce& Y, AbstractRouter* r) { TunnelNonce n = Y; for(const auto& hop : hops) { n ^= hop.nonceXOR; r->crypto()->xchacha20(buf, hop.shared, n); } if(!HandleRoutingMessage(buf, r)) return false; m_LastRecvMessage = r->Now(); return true; } bool Path::HandleRoutingMessage(const llarp_buffer_t& buf, AbstractRouter* r) { if(!r->ParseRoutingMessageBuffer(buf, this, RXID())) { LogWarn("Failed to parse inbound routing message"); return false; } return true; } bool Path::HandleUpdateExitVerifyMessage( const routing::UpdateExitVerifyMessage* msg, AbstractRouter* r) { (void)r; if(m_UpdateExitTX && msg->T == m_UpdateExitTX) { if(m_ExitUpdated) return m_ExitUpdated(this); } if(m_CloseExitTX && msg->T == m_CloseExitTX) { if(m_ExitClosed) return m_ExitClosed(this); } return false; } bool Path::SendRoutingMessage(const routing::IMessage* msg, AbstractRouter* r) { std::array< byte_t, MAX_LINK_MSG_SIZE / 2 > tmp; llarp_buffer_t buf(tmp); // should help prevent bad paths with uninitialized members // FIXME: Why would we get uninitialized IMessages? if(msg->version != LLARP_PROTO_VERSION) return false; if(!msg->BEncode(&buf)) { LogError("Bencode failed"); DumpBuffer(buf); return false; } // make nonce TunnelNonce N; N.Randomize(); buf.sz = buf.cur - buf.base; // pad smaller messages if(buf.sz < pad_size) { // randomize padding r->crypto()->randbytes(buf.cur, pad_size - buf.sz); buf.sz = pad_size; } buf.cur = buf.base; return HandleUpstream(buf, N, r); } bool Path::HandlePathTransferMessage(__attribute__((unused)) const routing::PathTransferMessage* msg, __attribute__((unused)) AbstractRouter* r) { LogWarn("unwarranted path transfer message on tx=", TXID(), " rx=", RXID()); return false; } bool Path::HandleDataDiscardMessage(const routing::DataDiscardMessage* msg, AbstractRouter* r) { MarkActive(r->Now()); if(m_DropHandler) return m_DropHandler(this, msg->P, msg->S); return true; } bool Path::HandlePathConfirmMessage(__attribute__((unused)) const routing::PathConfirmMessage* msg, AbstractRouter* r) { auto now = r->Now(); if(_status == ePathBuilding) { // finish initializing introduction intro.expiresAt = buildStarted + hops[0].lifetime; r->routerProfiling().MarkPathSuccess(this); // persist session with upstream router until the path is done r->PersistSessionUntil(Upstream(), intro.expiresAt); MarkActive(now); // send path latency test routing::PathLatencyMessage latency; latency.T = randint(); m_LastLatencyTestID = latency.T; m_LastLatencyTestTime = now; return SendRoutingMessage(&latency, r); } LogWarn("got unwarranted path confirm message on tx=", RXID(), " rx=", RXID()); return false; } bool Path::HandleHiddenServiceFrame(const service::ProtocolFrame* frame) { MarkActive(m_PathSet->Now()); return m_DataHandler && m_DataHandler(this, frame); } bool Path::HandlePathLatencyMessage(const routing::PathLatencyMessage* msg, AbstractRouter* r) { auto now = r->Now(); MarkActive(now); if(msg->L == m_LastLatencyTestID) { intro.latency = now - m_LastLatencyTestTime; m_LastLatencyTestID = 0; EnterState(ePathEstablished, now); if(m_BuiltHook) m_BuiltHook(this); m_BuiltHook = nullptr; LogDebug("path latency is now ", intro.latency, " for ", Name()); return true; } else { LogWarn("unwarranted path latency message via ", Upstream()); return false; } } bool Path::HandleDHTMessage(const dht::IMessage* msg, AbstractRouter* r) { MarkActive(r->Now()); routing::DHTMessage reply; if(!msg->HandleMessage(r->dht(), reply.M)) return false; if(reply.M.size()) return SendRoutingMessage(&reply, r); return true; } bool Path::HandleCloseExitMessage(const routing::CloseExitMessage* msg, AbstractRouter* r) { /// allows exits to close from their end if(SupportsAnyRoles(ePathRoleExit | ePathRoleSVC)) { if(msg->Verify(r->crypto(), EndpointPubKey())) { LogInfo(Name(), " had its exit closed"); _role &= ~ePathRoleExit; return true; } else LogError(Name(), " CXM from exit with bad signature"); } else LogError(Name(), " unwarranted CXM"); return false; } bool Path::SendExitRequest(const routing::ObtainExitMessage* msg, AbstractRouter* r) { LogInfo(Name(), " sending exit request to ", Endpoint()); m_ExitObtainTX = msg->T; return SendRoutingMessage(msg, r); } bool Path::SendExitClose(const routing::CloseExitMessage* msg, AbstractRouter* r) { LogInfo(Name(), " closing exit to ", Endpoint()); // mark as not exit anymore _role &= ~ePathRoleExit; return SendRoutingMessage(msg, r); } bool Path::HandleObtainExitMessage(const routing::ObtainExitMessage* msg, AbstractRouter* r) { (void)msg; (void)r; LogError(Name(), " got unwarranted OXM"); return false; } bool Path::HandleUpdateExitMessage(const routing::UpdateExitMessage* msg, AbstractRouter* r) { (void)msg; (void)r; LogError(Name(), " got unwarranted UXM"); return false; } bool Path::HandleRejectExitMessage(const routing::RejectExitMessage* msg, AbstractRouter* r) { if(m_ExitObtainTX && msg->T == m_ExitObtainTX) { if(!msg->Verify(r->crypto(), EndpointPubKey())) { LogError(Name(), "RXM invalid signature"); return false; } LogInfo(Name(), " ", Endpoint(), " Rejected exit"); MarkActive(r->Now()); return InformExitResult(msg->B); } LogError(Name(), " got unwarranted RXM"); return false; } bool Path::HandleGrantExitMessage(const routing::GrantExitMessage* msg, AbstractRouter* r) { if(m_ExitObtainTX && msg->T == m_ExitObtainTX) { if(!msg->Verify(r->crypto(), EndpointPubKey())) { LogError(Name(), " GXM signature failed"); return false; } // we now can send exit traffic _role |= ePathRoleExit; LogInfo(Name(), " ", Endpoint(), " Granted exit"); MarkActive(r->Now()); return InformExitResult(0); } LogError(Name(), " got unwarranted GXM"); return false; } bool Path::InformExitResult(llarp_time_t B) { bool result = true; for(const auto& hook : m_ObtainedExitHooks) result &= hook(this, B); m_ObtainedExitHooks.clear(); return result; } bool Path::HandleTransferTrafficMessage( const routing::TransferTrafficMessage* msg, AbstractRouter* r) { // check if we can handle exit data if(!SupportsAnyRoles(ePathRoleExit | ePathRoleSVC)) return false; MarkActive(r->Now()); // handle traffic if we have a handler if(!m_ExitTrafficHandler) return false; bool sent = msg->X.size() > 0; for(const auto& pkt : msg->X) { if(pkt.size() <= 8) return false; uint64_t counter = bufbe64toh(pkt.data()); m_ExitTrafficHandler( this, llarp_buffer_t(pkt.data() + 8, pkt.size() - 8), counter); } return sent; } } // namespace path } // namespace llarp