/** * @file condition_variable.h * @brief std::condition_variable implementation for MinGW * * (c) 2013-2016 by Mega Limited, Auckland, New Zealand * @author Alexander Vassilev * * @copyright Simplified (2-clause) BSD License. * You should have received a copy of the license along with this * program. * * This code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * @note * This file may become part of the mingw-w64 runtime package. If/when this * happens, the appropriate license will be added, i.e. this code will become * dual-licensed, and the current BSD 2-clause license will stay. */ #ifndef MINGW_CONDITIONAL_VARIABLE_H #define MINGW_CONDITIONAL_VARIABLE_H #if !defined(__cplusplus) || (__cplusplus < 201103L) #error A C++11 compiler is required! #endif // Use the standard classes for std::, if available. #include #include #include #include #include #include #include "mingw.mutex.h" #include "mingw.shared_mutex.h" namespace mingw_stdthread { #if defined(__MINGW32__) && !defined(_GLIBCXX_HAS_GTHREADS) enum class cv_status { no_timeout, timeout }; #else using std::cv_status; #endif namespace xp { // Include the XP-compatible condition_variable classes only if actually // compiling for XP. The XP-compatible classes are slower than the newer // versions, and depend on features not compatible with Windows Phone 8. #if(WINVER < _WIN32_WINNT_VISTA) class condition_variable_any { protected: recursive_mutex mMutex; std::atomic< int > mNumWaiters; HANDLE mSemaphore; HANDLE mWakeEvent; public: typedef HANDLE native_handle_type; native_handle_type native_handle() { return mSemaphore; } condition_variable_any(const condition_variable_any&) = delete; condition_variable_any& operator=(const condition_variable_any&) = delete; condition_variable_any() : mMutex() , mNumWaiters(0) , mSemaphore(CreateSemaphore(NULL, 0, 0xFFFF, NULL)) , mWakeEvent(CreateEvent(NULL, FALSE, FALSE, NULL)) { } ~condition_variable_any() { CloseHandle(mWakeEvent); CloseHandle(mSemaphore); } protected: template < class M > bool wait_impl(M& lock, DWORD timeout) { { lock_guard< recursive_mutex > guard(mMutex); mNumWaiters++; } lock.unlock(); DWORD ret = WaitForSingleObject(mSemaphore, timeout); mNumWaiters--; SetEvent(mWakeEvent); lock.lock(); if(ret == WAIT_OBJECT_0) return true; else if(ret == WAIT_TIMEOUT) return false; // 2 possible cases: // 1)The point in notify_all() where we determine the count to // increment the semaphore with has not been reached yet: // we just need to decrement mNumWaiters, but setting the event does not // hurt // // 2)Semaphore has just been released with mNumWaiters just before // we decremented it. This means that the semaphore count // after all waiters finish won't be 0 - because not all waiters // woke up by acquiring the semaphore - we woke up by a timeout. // The notify_all() must handle this grafecully // else { using namespace std; throw system_error(make_error_code(errc::protocol_error)); } } public: template < class M > void wait(M& lock) { wait_impl(lock, INFINITE); } template < class M, class Predicate > void wait(M& lock, Predicate pred) { while(!pred()) { wait(lock); }; } void notify_all() noexcept { lock_guard< recursive_mutex > lock( mMutex); // block any further wait requests until all current // waiters are unblocked if(mNumWaiters.load() <= 0) return; ReleaseSemaphore(mSemaphore, mNumWaiters, NULL); while(mNumWaiters > 0) { auto ret = WaitForSingleObject(mWakeEvent, 1000); if(ret == WAIT_FAILED || ret == WAIT_ABANDONED) std::terminate(); } assert(mNumWaiters == 0); // in case some of the waiters timed out just after we released the // semaphore by mNumWaiters, it won't be zero now, because not all // waiters woke up by acquiring the semaphore. So we must zero the // semaphore before we accept waiters for the next event See _wait_impl // for details while(WaitForSingleObject(mSemaphore, 0) == WAIT_OBJECT_0) ; } void notify_one() noexcept { lock_guard< recursive_mutex > lock(mMutex); int targetWaiters = mNumWaiters.load() - 1; if(targetWaiters <= -1) return; ReleaseSemaphore(mSemaphore, 1, NULL); while(mNumWaiters > targetWaiters) { auto ret = WaitForSingleObject(mWakeEvent, 1000); if(ret == WAIT_FAILED || ret == WAIT_ABANDONED) std::terminate(); } assert(mNumWaiters == targetWaiters); } template < class M, class Rep, class Period > cv_status wait_for(M& lock, const std::chrono::duration< Rep, Period >& rel_time) { using namespace std::chrono; long long timeout = duration_cast< milliseconds >(rel_time).count(); if(timeout < 0) timeout = 0; bool ret = wait_impl(lock, (DWORD)timeout); return ret ? cv_status::no_timeout : cv_status::timeout; } template < class M, class Rep, class Period, class Predicate > bool wait_for(M& lock, const std::chrono::duration< Rep, Period >& rel_time, Predicate pred) { return wait_until(lock, std::chrono::steady_clock::now() + rel_time, pred); } template < class M, class Clock, class Duration > cv_status wait_until(M& lock, const std::chrono::time_point< Clock, Duration >& abs_time) { return wait_for(lock, abs_time - Clock::now()); } template < class M, class Clock, class Duration, class Predicate > bool wait_until(M& lock, const std::chrono::time_point< Clock, Duration >& abs_time, Predicate pred) { while(!pred()) { if(wait_until(lock, abs_time) == cv_status::timeout) { return pred(); } } return true; } }; class condition_variable : protected condition_variable_any { protected: typedef condition_variable_any base; public: using base::base; using base::native_handle; using base::native_handle_type; using base::notify_all; using base::notify_one; void wait(unique_lock< mutex >& lock) { base::wait(lock); } template < class Predicate > void wait(unique_lock< mutex >& lock, Predicate pred) { base::wait(lock, pred); } template < class Rep, class Period > cv_status wait_for(unique_lock< mutex >& lock, const std::chrono::duration< Rep, Period >& rel_time) { return base::wait_for(lock, rel_time); } template < class Rep, class Period, class Predicate > bool wait_for(unique_lock< mutex >& lock, const std::chrono::duration< Rep, Period >& rel_time, Predicate pred) { return base::wait_for(lock, rel_time, pred); } template < class Clock, class Duration > cv_status wait_until(unique_lock< mutex >& lock, const std::chrono::time_point< Clock, Duration >& abs_time) { return base::wait_until(lock, abs_time); } template < class Clock, class Duration, class Predicate > bool wait_until(unique_lock< mutex >& lock, const std::chrono::time_point< Clock, Duration >& abs_time, Predicate pred) { return base::wait_until(lock, abs_time, pred); } }; #endif // Compiling for XP } // namespace xp #if(WINVER >= _WIN32_WINNT_VISTA) namespace vista { // If compiling for Vista or higher, use the native condition variable. class condition_variable { protected: CONDITION_VARIABLE cvariable_; #if STDMUTEX_RECURSION_CHECKS template < typename MTX > inline static void before_wait(MTX* pmutex) { pmutex->mOwnerThread.checkSetOwnerBeforeUnlock(); } template < typename MTX > inline static void after_wait(MTX* pmutex) { pmutex->mOwnerThread.setOwnerAfterLock(GetCurrentThreadId()); } #else inline static void before_wait(void*) { } inline static void after_wait(void*) { } #endif bool wait_impl(unique_lock< xp::mutex >& lock, DWORD time) { static_assert(std::is_same< typename xp::mutex::native_handle_type, PCRITICAL_SECTION >::value, "Native Win32 condition variable requires std::mutex to \ use native Win32 critical section objects."); xp::mutex* pmutex = lock.release(); before_wait(pmutex); BOOL success = SleepConditionVariableCS(&cvariable_, pmutex->native_handle(), time); after_wait(pmutex); lock = unique_lock< xp::mutex >(*pmutex, adopt_lock); return success; } bool wait_unique(windows7::mutex* pmutex, DWORD time) { before_wait(pmutex); BOOL success = SleepConditionVariableSRW( native_handle(), pmutex->native_handle(), time, 0); after_wait(pmutex); return success; } bool wait_impl(unique_lock< windows7::mutex >& lock, DWORD time) { windows7::mutex* pmutex = lock.release(); bool success = wait_unique(pmutex, time); lock = unique_lock< windows7::mutex >(*pmutex, adopt_lock); return success; } public: typedef PCONDITION_VARIABLE native_handle_type; native_handle_type native_handle(void) { return &cvariable_; } condition_variable(void) : cvariable_() { InitializeConditionVariable(&cvariable_); } ~condition_variable(void) = default; condition_variable(const condition_variable&) = delete; condition_variable& operator=(const condition_variable&) = delete; void notify_one(void) noexcept { WakeConditionVariable(&cvariable_); } void notify_all(void) noexcept { WakeAllConditionVariable(&cvariable_); } void wait(unique_lock< mutex >& lock) { wait_impl(lock, INFINITE); } template < class Predicate > void wait(unique_lock< mutex >& lock, Predicate pred) { while(!pred()) wait(lock); } template < class Rep, class Period > cv_status wait_for(unique_lock< mutex >& lock, const std::chrono::duration< Rep, Period >& rel_time) { using namespace std::chrono; auto time = duration_cast< milliseconds >(rel_time).count(); if(time < 0) time = 0; bool result = wait_impl(lock, static_cast< DWORD >(time)); return result ? cv_status::no_timeout : cv_status::timeout; } template < class Rep, class Period, class Predicate > bool wait_for(unique_lock< mutex >& lock, const std::chrono::duration< Rep, Period >& rel_time, Predicate pred) { return wait_until(lock, std::chrono::steady_clock::now() + rel_time, std::move(pred)); } template < class Clock, class Duration > cv_status wait_until(unique_lock< mutex >& lock, const std::chrono::time_point< Clock, Duration >& abs_time) { return wait_for(lock, abs_time - Clock::now()); } template < class Clock, class Duration, class Predicate > bool wait_until(unique_lock< mutex >& lock, const std::chrono::time_point< Clock, Duration >& abs_time, Predicate pred) { while(!pred()) { if(wait_until(lock, abs_time) == cv_status::timeout) { return pred(); } } return true; } }; class condition_variable_any : protected condition_variable { protected: typedef condition_variable base; typedef windows7::shared_mutex native_shared_mutex; // When available, the SRW-based mutexes should be faster than the // CriticalSection-based mutexes. Only try_lock will be unavailable in // Vista, and try_lock is not used by condition_variable_any. windows7::mutex internal_mutex_; template < class L > bool wait_impl(L& lock, DWORD time) { unique_lock< decltype(internal_mutex_) > internal_lock(internal_mutex_); lock.unlock(); bool success = base::wait_impl(internal_lock, time); lock.lock(); return success; } // If the lock happens to be called on a native Windows mutex, skip any // extra // contention. inline bool wait_impl(unique_lock< mutex >& lock, DWORD time) { return base::wait_impl(lock, time); } // Some shared_mutex functionality is available even in Vista, but it's // not // until Windows 7 that a full implementation is natively possible. The // class itself is defined, with missing features, at the Vista feature // level. static_assert(CONDITION_VARIABLE_LOCKMODE_SHARED != 0, "The flag \ CONDITION_VARIABLE_LOCKMODE_SHARED is not defined as expected. The value for \ exclusive mode is unknown (not specified by Microsoft Dev Center), but assumed \ to be 0. There is a conflict with CONDITION_VARIABLE_LOCKMODE_SHARED."); //#if (WINVER >= _WIN32_WINNT_VISTA) bool wait_impl(unique_lock< native_shared_mutex >& lock, DWORD time) { native_shared_mutex* pmutex = lock.release(); bool success = wait_unique(pmutex, time); lock = unique_lock< native_shared_mutex >(*pmutex, adopt_lock); return success; } bool wait_impl(shared_lock< native_shared_mutex >& lock, DWORD time) { native_shared_mutex* pmutex = lock.release(); BOOL success = SleepConditionVariableSRW( base::native_handle(), pmutex->native_handle(), time, CONDITION_VARIABLE_LOCKMODE_SHARED); lock = shared_lock< native_shared_mutex >(*pmutex, adopt_lock); return success; } //#endif public: typedef typename base::native_handle_type native_handle_type; using base::native_handle; condition_variable_any(void) : base(), internal_mutex_() { } ~condition_variable_any(void) = default; using base::notify_all; using base::notify_one; template < class L > void wait(L& lock) { wait_impl(lock, INFINITE); } template < class L, class Predicate > void wait(L& lock, Predicate pred) { while(!pred()) wait(lock); } template < class L, class Rep, class Period > cv_status wait_for(L& lock, const std::chrono::duration< Rep, Period >& period) { using namespace std::chrono; auto time = duration_cast< milliseconds >(period).count(); if(time < 0) time = 0; bool result = wait_impl(lock, static_cast< DWORD >(time)); return result ? cv_status::no_timeout : cv_status::timeout; } template < class L, class Rep, class Period, class Predicate > bool wait_for(L& lock, const std::chrono::duration< Rep, Period >& period, Predicate pred) { return wait_until(lock, std::chrono::steady_clock::now() + period, std::move(pred)); } template < class L, class Clock, class Duration > cv_status wait_until(L& lock, const std::chrono::time_point< Clock, Duration >& abs_time) { return wait_for(lock, abs_time - Clock::now()); } template < class L, class Clock, class Duration, class Predicate > bool wait_until(L& lock, const std::chrono::time_point< Clock, Duration >& abs_time, Predicate pred) { while(!pred()) { if(wait_until(lock, abs_time) == cv_status::timeout) { return pred(); } } return true; } }; } // Namespace vista #endif #if WINVER < 0x0600 using xp::condition_variable; using xp::condition_variable_any; #else using vista::condition_variable; using vista::condition_variable_any; #endif } // Namespace mingw_stdthread // Push objects into std, but only if they are not already there. namespace std { // Because of quirks of the compiler, the common "using namespace std;" // directive would flatten the namespaces and introduce ambiguity where there // was none. Direct specification (std::), however, would be unaffected. // Take the safe option, and include only in the presence of MinGW's win32 // implementation. #if defined(__MINGW32__) && !defined(_GLIBCXX_HAS_GTHREADS) using mingw_stdthread::condition_variable; using mingw_stdthread::condition_variable_any; using mingw_stdthread::cv_status; #elif !defined(MINGW_STDTHREAD_REDUNDANCY_WARNING) // Skip repetition #define MINGW_STDTHREAD_REDUNDANCY_WARNING #pragma message \ "This version of MinGW seems to include a win32 port of\ pthreads, and probably already has C++11 std threading classes implemented,\ based on pthreads. These classes, found in namespace std, are not overridden\ by the mingw-std-thread library. If you would still like to use this\ implementation (as it is more lightweight), use the classes provided in\ namespace mingw_stdthread." #endif } // namespace std #endif // MINGW_CONDITIONAL_VARIABLE_H