#include #include #include #include "buffer.hpp" #include "mem.hpp" struct llarp_async_iwp { struct llarp_crypto *crypto; struct llarp_logic *logic; struct llarp_threadpool *worker; }; namespace iwp { void inform_keygen(void *user) { iwp_async_keygen *keygen = static_cast< iwp_async_keygen * >(user); keygen->hook(keygen); } void keygen(void *user) { iwp_async_keygen *keygen = static_cast< iwp_async_keygen * >(user); keygen->iwp->crypto->encryption_keygen(keygen->keybuf); llarp_thread_job job = {.user = user, .work = &inform_keygen}; llarp_logic_queue_job(keygen->iwp->logic, job); } void inform_intro(void *user) { iwp_async_intro *intro = static_cast< iwp_async_intro * >(user); intro->hook(intro); } void gen_intro(void *user) { iwp_async_intro *intro = static_cast< iwp_async_intro * >(user); llarp_sharedkey_t sharedkey; llarp_shorthash_t e_k; llarp_nonce_t n; llarp_crypto *crypto = intro->iwp->crypto; byte_t tmp[64]; // S = TKE(a.k, b.k, n) crypto->transport_dh_client(sharedkey, intro->remote_pubkey, intro->secretkey, intro->nonce); auto buf = llarp::StackBuffer< decltype(tmp) >(tmp); // copy nonce memcpy(n, intro->nonce, 24); // e_k = HS(b.k + n) memcpy(tmp, intro->remote_pubkey, 32); memcpy(tmp + 32, intro->nonce, 32); crypto->shorthash(e_k, buf); // e = SE(a.k, e_k, n[0:24]) memcpy(intro->buf + 64, llarp_seckey_topublic(intro->secretkey), 32); buf.base = intro->buf + 64; buf.cur = buf.base; buf.sz = 32; crypto->xchacha20(buf, e_k, n); // h = MDS( n + e + w0, S) buf.base = intro->buf + 32; buf.cur = buf.base; buf.sz = intro->sz - 32; crypto->hmac(intro->buf, buf, sharedkey); // inform result llarp_logic_queue_job(intro->iwp->logic, {intro, &inform_intro}); } void verify_intro(void *user) { iwp_async_intro *intro = static_cast< iwp_async_intro * >(user); auto crypto = intro->iwp->crypto; llarp_sharedkey_t sharedkey; llarp_shorthash_t e_K; llarp_hmac_t h; llarp_nonce_t N; byte_t tmp[64]; auto OurPK = llarp_seckey_topublic(intro->secretkey); // e_k = HS(b.k + n) memcpy(tmp, OurPK, 32); memcpy(tmp + 32, intro->nonce, 32); auto buf = llarp::StackBuffer< decltype(tmp) >(tmp); crypto->shorthash(e_K, buf); // a.k = SD(x, e_k, n[0:24]) memcpy(N, intro->nonce, 24); buf.base = intro->remote_pubkey; buf.cur = buf.base; buf.sz = 32; memcpy(intro->remote_pubkey, intro->buf + 64, 32); crypto->xchacha20(buf, e_K, N); // S = TKE(a.k, b.k, n) crypto->transport_dh_server(sharedkey, intro->remote_pubkey, intro->secretkey, intro->nonce); // h = MDS( n + e + w2 ) buf.base = intro->buf + 32; buf.cur = buf.base; buf.sz = intro->sz - 32; crypto->hmac(h, buf, sharedkey); if(memcmp(h, intro->buf, 32)) { // hmac fail intro->buf = nullptr; } // inform result llarp_logic_queue_job(intro->iwp->logic, {intro, &inform_intro}); } void inform_introack(void *user) { iwp_async_introack *introack = static_cast< iwp_async_introack * >(user); introack->hook(introack); } void verify_introack(void *user) { iwp_async_introack *introack = static_cast< iwp_async_introack * >(user); auto crypto = introack->iwp->crypto; auto logic = introack->iwp->logic; llarp_hmac_t digest; llarp_sharedkey_t sharedkey; auto hmac = introack->buf; auto body = introack->buf + 32; auto pubkey = introack->remote_pubkey; auto secretkey = introack->secretkey; auto nonce = introack->buf + 32; auto token = introack->buf + 64; size_t bodysz = introack->sz - 32; llarp_buffer_t buf; buf.base = body; buf.cur = body; buf.sz = bodysz; // S = TKE(a.k, b.k, n) crypto->transport_dh_client(sharedkey, pubkey, secretkey, nonce); // h = MDS(n + x + w1, S) crypto->hmac(digest, buf, sharedkey); if(!llarp_eq(digest, hmac, 32)) { // fail to verify hmac introack->buf = nullptr; } else { buf.base = token; buf.sz = 32; // token = SD(S, x, n[0:24]) crypto->xchacha20(buf, sharedkey, nonce); // copy token memcpy(introack->token, token, 32); } llarp_logic_queue_job(logic, {introack, &inform_introack}); } void gen_introack(void *user) { iwp_async_introack *introack = static_cast< iwp_async_introack * >(user); llarp_sharedkey_t sharedkey; auto crypto = introack->iwp->crypto; auto pubkey = introack->remote_pubkey; auto secretkey = introack->secretkey; auto nonce = introack->nonce; // S = TKE(a.k, b.k, n) crypto->transport_dh_server(sharedkey, pubkey, secretkey, nonce); // x = SE(S, token, n[0:24]) llarp_buffer_t buf; buf.base = introack->buf + 64; buf.sz = 32; buf.cur = buf.base; memcpy(buf.base, introack->token, 32); crypto->xchacha20(buf, sharedkey, nonce); // h = MDS(n + x + w1, S) buf.base = introack->buf + 32; buf.sz = introack->sz - 32; buf.cur = buf.base; crypto->hmac(introack->buf, buf, sharedkey); llarp_logic_queue_job(introack->iwp->logic, {introack, &inform_introack}); } void inform_session_start(void *user) { iwp_async_session_start *session = static_cast< iwp_async_session_start * >(user); session->hook(session); } void gen_session_start(void *user) { iwp_async_session_start *session = static_cast< iwp_async_session_start * >(user); auto crypto = session->iwp->crypto; auto dh = crypto->transport_dh_client; auto shorthash = crypto->shorthash; auto hmac = crypto->hmac; auto encrypt = crypto->xchacha20; auto logic = session->iwp->logic; auto a_sK = session->secretkey; auto b_K = session->remote_pubkey; auto N = session->nonce; auto token = session->token; auto K = session->sessionkey; llarp_sharedkey_t e_K; llarp_shorthash_t T; byte_t tmp[64]; llarp_buffer_t buf; llarp::StackBuffer< decltype(tmp) >(buf, tmp); // T = HS(token + n) memcpy(tmp, token, 32); memcpy(tmp + 32, N, 32); shorthash(T, buf); // e_K = TKE(a.k, b.k, n) dh(e_K, b_K, a_sK, N); // K = TKE(a.k, b.k, T) dh(K, b_K, a_sK, T); // x = SE(e_K, token, n[0:24]) buf.base = (session->buf + 64); buf.sz = 32; memcpy(buf.base, token, 32); encrypt(buf, e_K, N); // h = MDS(n + x + w2, e_K) buf.base = (session->buf + 32); buf.sz = session->sz - 32; hmac(session->buf, buf, e_K); llarp_logic_queue_job(logic, {user, &inform_session_start}); } void verify_session_start(void *user) { iwp_async_session_start *session = static_cast< iwp_async_session_start * >(user); auto crypto = session->iwp->crypto; auto dh = crypto->transport_dh_server; auto shorthash = crypto->shorthash; auto hmac = crypto->hmac; auto decrypt = crypto->xchacha20; auto logic = session->iwp->logic; auto b_sK = session->secretkey; auto a_K = session->remote_pubkey; auto N = session->nonce; auto token = session->token; auto K = session->sessionkey; llarp_sharedkey_t e_K; llarp_shorthash_t T; byte_t tmp[64]; llarp_buffer_t buf; // e_K = TKE(a.k, b.k, N) dh(e_K, a_K, b_sK, N); // h = MDS( n + x + w2, e_K) buf.base = session->buf + 32; buf.cur = buf.base; buf.sz = session->sz - 32; hmac(tmp, buf, e_K); if(memcmp(tmp, session->buf, 32) == 0) { // hmac good buf.base = session->buf + 64; buf.cur = buf.base; buf.sz = 32; // token = SD(e_K, x, n[0:24]) decrypt(buf, e_K, N); // ensure it's the same token if(memcmp(buf.base, token, 32) == 0) { // T = HS(token + n) memcpy(tmp, token, 32); memcpy(tmp + 32, N, 32); buf.base = tmp; buf.cur = buf.base; buf.sz = sizeof(tmp); shorthash(T, buf); // K = TKE(a.k, b.k, T) dh(K, a_K, b_sK, T); } else // token missmatch { session->buf = nullptr; printf("token miss match\n"); } } else // hmac fail session->buf = nullptr; llarp_logic_queue_job(logic, {user, &inform_session_start}); } void inform_frame_done(void *user) { iwp_async_frame *frame = static_cast< iwp_async_frame * >(user); frame->hook(frame); } void hmac_then_decrypt(void *user) { iwp_async_frame *frame = static_cast< iwp_async_frame * >(user); auto crypto = frame->iwp->crypto; auto hmac = frame->buf; auto nonce = frame->buf + 32; auto body = frame->buf + 64; llarp_sharedkey_t digest; llarp_buffer_t buf; buf.base = nonce; buf.cur = buf.base; buf.sz = frame->sz - 32; // h = MDS(n + x, S) crypto->hmac(digest, buf, frame->sessionkey); // check hmac frame->success = memcmp(digest, hmac, 32) == 0; // x = SE(S, p, n[0:24]) buf.base = body; buf.cur = buf.base; buf.sz = frame->sz - 64; crypto->xchacha20(buf, frame->sessionkey, nonce); // inform result llarp_logic_queue_job(frame->iwp->logic, {user, &inform_frame_done}); } void encrypt_then_hmac(void *user) { iwp_async_frame *frame = static_cast< iwp_async_frame * >(user); auto crypto = frame->iwp->crypto; auto hmac = frame->buf; auto nonce = frame->buf + 32; auto body = frame->buf + 64; llarp_buffer_t buf; buf.base = body; buf.cur = buf.base; buf.sz = frame->sz - 64; // randomize N crypto->randbytes(nonce, 32); // x = SE(S, p, n[0:24]) crypto->xchacha20(buf, frame->sessionkey, nonce); // h = MDS(n + x, S) buf.base = nonce; buf.cur = buf.base; buf.sz = frame->sz - 32; crypto->hmac(hmac, buf, frame->sessionkey); // inform result llarp_logic_queue_job(frame->iwp->logic, {user, &inform_frame_done}); } } extern "C" { void iwp_call_async_keygen(struct llarp_async_iwp *iwp, struct iwp_async_keygen *keygen) { keygen->iwp = iwp; llarp_threadpool_queue_job(iwp->worker, {keygen, &iwp::keygen}); } void iwp_call_async_gen_intro(struct llarp_async_iwp *iwp, struct iwp_async_intro *intro) { intro->iwp = iwp; llarp_threadpool_queue_job(iwp->worker, {intro, &iwp::gen_intro}); } void iwp_call_async_verify_introack(struct llarp_async_iwp *iwp, struct iwp_async_introack *introack) { introack->iwp = iwp; llarp_threadpool_queue_job(iwp->worker, {introack, &iwp::verify_introack}); } void iwp_call_async_gen_session_start(struct llarp_async_iwp *iwp, struct iwp_async_session_start *session) { session->iwp = iwp; llarp_threadpool_queue_job(iwp->worker, {session, &iwp::gen_session_start}); } void iwp_call_async_verify_intro(struct llarp_async_iwp *iwp, struct iwp_async_intro *intro) { intro->iwp = iwp; llarp_threadpool_queue_job(iwp->worker, {intro, &iwp::verify_intro}); } void iwp_call_async_gen_introack(struct llarp_async_iwp *iwp, struct iwp_async_introack *introack) { introack->iwp = iwp; llarp_threadpool_queue_job(iwp->worker, {introack, &iwp::gen_introack}); } void iwp_call_async_frame_decrypt(struct llarp_async_iwp *iwp, struct iwp_async_frame *frame) { frame->iwp = iwp; llarp_threadpool_queue_job(iwp->worker, {frame, &iwp::hmac_then_decrypt}); } void iwp_call_async_frame_encrypt(struct llarp_async_iwp *iwp, struct iwp_async_frame *frame) { frame->iwp = iwp; llarp_threadpool_queue_job(iwp->worker, {frame, &iwp::encrypt_then_hmac}); } void iwp_call_async_verify_session_start(struct llarp_async_iwp *iwp, struct iwp_async_session_start *session) { session->iwp = iwp; llarp_threadpool_queue_job(iwp->worker, {session, &iwp::verify_session_start}); } struct llarp_async_iwp * llarp_async_iwp_new(struct llarp_crypto *crypto, struct llarp_logic *logic, struct llarp_threadpool *worker) { llarp_async_iwp *iwp = new llarp_async_iwp; if(iwp) { iwp->crypto = crypto; iwp->logic = logic; iwp->worker = worker; } return iwp; } void llarp_async_iwp_free(struct llarp_async_iwp *iwp) { delete iwp; } }