#ifndef LLARP_EV_HPP #define LLARP_EV_HPP #include // writev #ifndef _WIN32 #include #endif #include #include #include #include #include #ifdef _WIN32 #include #endif #ifndef MAX_WRITE_QUEUE_SIZE #define MAX_WRITE_QUEUE_SIZE 1024 #endif #ifndef EV_READ_BUF_SZ #define EV_READ_BUF_SZ (4 * 1024) #endif namespace llarp { struct ev_io { #ifndef _WIN32 int fd; ev_io(int f) : fd(f), m_writeq("writequeue"){}; #else // on windows, udp event loops are socket fds // and TUN device is a plain old fd std::variant< SOCKET, HANDLE > fd; // the unique completion key that helps us to // identify the object instance for which we receive data // Here, we'll use the address of the udp_listener instance, converted // to its literal int/int64 representation. ULONG_PTR listener_id = 0; ev_io(SOCKET f) : fd(f), m_writeq("writequeue"){}; ev_io(HANDLE t) : fd(t), m_writeq("writequeue"){}; // overload for TUN device, which // _is_ a regular file descriptor #endif virtual int read(void* buf, size_t sz) = 0; virtual int sendto(const sockaddr* dst, const void* data, size_t sz) = 0; /// used for tun interface virtual bool do_write(void* data, size_t sz) { #ifndef _WIN32 return write(fd, data, sz) != -1; #else return WriteFile(std::get< HANDLE >(fd), data, sz, nullptr, nullptr); #endif } /// called in event loop when fd is ready for writing /// requeues anything not written /// this assumes fd is set to non blocking virtual void flush_write() { m_writeq.Process([&](WriteBuffer& buffer) { do_write(buffer.buf, buffer.bufsz); // if we would block we save the entries for later // discard entry }); /// reset errno errno = 0; #if _WIN32 SetLastError(0); #endif } struct WriteBuffer { llarp_time_t timestamp = 0; size_t bufsz; byte_t buf[1500]; WriteBuffer() = default; WriteBuffer(const void* ptr, size_t sz) { if(sz <= sizeof(buf)) { bufsz = sz; memcpy(buf, ptr, bufsz); } else bufsz = 0; } struct GetTime { llarp_time_t operator()(const WriteBuffer& w) const { return w.timestamp; } }; struct PutTime { void operator()(WriteBuffer& w) const { w.timestamp = llarp_time_now_ms(); } }; struct Compare { bool operator()(const WriteBuffer& left, const WriteBuffer& right) const { return left.timestamp < right.timestamp; } }; }; llarp::util::CoDelQueue< WriteBuffer, WriteBuffer::GetTime, WriteBuffer::PutTime, WriteBuffer::Compare, llarp::util::NullMutex, llarp::util::NullLock > m_writeq; virtual ~ev_io() { #ifndef _WIN32 ::close(fd); #else closesocket(std::get< SOCKET >(fd)); #endif }; }; }; // namespace llarp struct llarp_ev_loop { byte_t readbuf[EV_READ_BUF_SZ]; virtual bool init() = 0; virtual int run() = 0; virtual int tick(int ms) = 0; virtual void stop() = 0; bool udp_listen(llarp_udp_io* l, const sockaddr* src) { auto ev = create_udp(l, src); if(ev) { #ifdef _WIN32 l->fd = std::get< SOCKET >(ev->fd); #else l->fd = ev->fd; #endif } return ev && add_ev(ev, false); } virtual llarp::ev_io* create_udp(llarp_udp_io* l, const sockaddr* src) = 0; virtual bool udp_close(llarp_udp_io* l) = 0; virtual bool close_ev(llarp::ev_io* ev) = 0; virtual llarp::ev_io* create_tun(llarp_tun_io* tun) = 0; virtual bool add_ev(llarp::ev_io* ev, bool write = false) = 0; virtual bool running() const = 0; virtual ~llarp_ev_loop(){}; std::list< llarp_udp_io* > udp_listeners; std::list< llarp_tun_io* > tun_listeners; void tick_listeners() { for(auto& l : udp_listeners) if(l->tick) l->tick(l); for(auto& l : tun_listeners) { if(l->tick) l->tick(l); if(l->before_write) l->before_write(l); static_cast< llarp::ev_io* >(l->impl)->flush_write(); } } }; #endif