#include #include #include #include #include "link/encoder.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include "buffer.hpp" #include "crypto.hpp" #include "fs.hpp" #include "logger.hpp" #include "mem.hpp" #include "net.hpp" #include "router.hpp" #include "str.hpp" namespace iwp { // session activity timeout is 5s constexpr llarp_time_t SESSION_TIMEOUT = 5000; constexpr size_t MAX_PAD = 128; enum msgtype { eALIV = 0x00, eXMIT = 0x01, eACKS = 0x02, eFRAG = 0x03 }; typedef std::vector< byte_t > sendbuf_t; enum header_flag { eSessionInvalidated = (1 << 0), eHighPacketDrop = (1 << 1), eHighMTUDetected = (1 << 2), eProtoUpgrade = (1 << 3) }; /** plaintext frame header */ struct frame_header { byte_t *ptr; frame_header(byte_t *buf) : ptr(buf) { } byte_t * data() { return ptr + 6; } uint8_t & version() { return ptr[0]; } uint8_t & msgtype() { return ptr[1]; } uint16_t size() const { uint16_t sz; memcpy(&sz, ptr + 2, 2); return sz; } void setsize(uint16_t sz) { memcpy(ptr + 2, &sz, 2); } uint8_t & flags() { return ptr[5]; } void setflag(header_flag f) { ptr[5] |= f; } }; byte_t * init_sendbuf(sendbuf_t &buf, msgtype t, uint16_t sz, uint8_t flags) { buf.resize(6 + sz); frame_header hdr(buf.data()); hdr.version() = 0; hdr.msgtype() = t; hdr.setsize(sz); buf[4] = 0; buf[5] = flags; return hdr.data(); } /** xmit header */ struct xmit { byte_t buffer[48]; xmit() { } xmit(byte_t *ptr) { memcpy(buffer, ptr, sizeof(buffer)); } xmit(const xmit &other) { memcpy(buffer, other.buffer, sizeof(buffer)); } void set_info(const byte_t *hash, uint64_t id, uint16_t fragsz, uint16_t lastsz, uint8_t numfrags, uint8_t flags = 0x01) { // big endian assumed // TODO: implement little endian memcpy(buffer, hash, 32); memcpy(buffer + 32, &id, 8); memcpy(buffer + 40, &fragsz, 2); memcpy(buffer + 42, &lastsz, 2); buffer[44] = 0; buffer[45] = 0; buffer[46] = numfrags; buffer[47] = flags; } const byte_t * hash() const { return &buffer[0]; } uint64_t msgid() const { // big endian assumed // TODO: implement little endian const byte_t *start = buffer + 32; const uint64_t *msgid = (const uint64_t *)start; return *msgid; } // size of each full fragment uint16_t fragsize() const { // big endian assumed // TODO: implement little endian const byte_t *start = buffer + 40; const uint16_t *fragsz = (uint16_t *)start; return *fragsz; } // number of full fragments uint8_t numfrags() const { return buffer[46]; } // size of the entire message size_t totalsize() const { return (fragsize() * numfrags()) + lastfrag(); } // size of the last fragment uint16_t lastfrag() const { // big endian assumed // TODO: implement little endian const byte_t *start = buffer + 42; const uint16_t *lastsz = (uint16_t *)start; return *lastsz; } uint8_t flags() { return buffer[47]; } }; typedef std::vector< uint8_t > fragment_t; // forward declare struct session; struct server; struct transit_message { session *parent = nullptr; xmit msginfo; std::bitset< 32 > status; std::map< uint8_t, fragment_t > frags; fragment_t lastfrag; transit_message() { } ~transit_message() { frags.clear(); } // calculate acked bitmask uint32_t get_bitmask() const { uint32_t bitmask = 0; uint8_t idx = 0; while(idx < 32) { bitmask |= (status.test(idx) ? (1 << idx) : 0); ++idx; } return bitmask; } // inbound transit_message(const xmit &x) : msginfo(x) { byte_t fragidx = 0; uint16_t fragsize = x.fragsize(); while(fragidx < x.numfrags()) { frags[fragidx].resize(fragsize); ++fragidx; } status.reset(); } // outbound transit_message(session *s) : parent(s) { } /// ack packets based off a bitmask void ack(uint32_t bitmask) { uint8_t idx = 0; while(idx < 32) { if(bitmask & (1 << idx)) { status.set(idx); } ++idx; } } bool should_send_ack() const { if(msginfo.numfrags() == 0) return true; return status.count() % (1 + (msginfo.numfrags() / 2)) == 0; } bool completed() const { for(byte_t idx = 0; idx < msginfo.numfrags(); ++idx) { if(!status.test(idx)) return false; } return true; } template < typename T > void generate_xmit(T &queue, byte_t flags = 0) { queue.emplace(); auto &xmitbuf = queue.back(); auto body_ptr = init_sendbuf( xmitbuf, eXMIT, sizeof(msginfo.buffer) + lastfrag.size(), flags); memcpy(body_ptr, msginfo.buffer, sizeof(msginfo.buffer)); body_ptr += sizeof(msginfo.buffer); memcpy(body_ptr, lastfrag.data(), lastfrag.size()); } template < typename T > void retransmit_frags(T &queue, byte_t flags = 0) { auto msgid = msginfo.msgid(); auto fragsize = msginfo.fragsize(); for(auto &frag : frags) { if(status.test(frag.first)) continue; queue.emplace(); auto &fragbuf = queue.back(); auto body_ptr = init_sendbuf(fragbuf, eFRAG, 9 + fragsize, flags); memcpy(body_ptr, &msgid, 8); body_ptr[8] = frag.first; memcpy(body_ptr + 9, frag.second.data(), fragsize); } } bool reassemble(std::vector< byte_t > &buffer) { auto total = msginfo.totalsize(); buffer.resize(total); auto fragsz = msginfo.fragsize(); auto ptr = buffer.data(); for(byte_t idx = 0; idx < msginfo.numfrags(); ++idx) { if(!status.test(idx)) return false; memcpy(ptr, frags[idx].data(), fragsz); ptr += fragsz; } memcpy(ptr, lastfrag.data(), lastfrag.size()); return true; } void put_message(llarp_buffer_t buf, const byte_t *hash, uint64_t id, uint16_t mtu = 1024) { status.reset(); uint8_t fragid = 0; uint16_t fragsize = mtu; while((buf.sz - (buf.cur - buf.base)) > fragsize) { auto &frag = frags[fragid]; frag.resize(fragsize); memcpy(frag.data(), buf.cur, fragsize); buf.cur += fragsize; fragid++; } uint16_t lastfrag = buf.sz - (buf.cur - buf.base); // set info for xmit msginfo.set_info(hash, id, fragsize, lastfrag, fragid); put_lastfrag(buf.cur, lastfrag); } void put_lastfrag(byte_t *buf, size_t sz) { lastfrag.resize(sz); memcpy(lastfrag.data(), buf, sz); } bool put_frag(byte_t fragno, byte_t *buf) { auto itr = frags.find(fragno); if(itr == frags.end()) return false; memcpy(itr->second.data(), buf, msginfo.fragsize()); status.set(fragno); return true; } }; struct frame_state { byte_t rxflags = 0; byte_t txflags = 0; uint64_t rxids = 0; uint64_t txids = 0; llarp_time_t lastEvent = 0; std::map< uint64_t, transit_message * > rx; std::map< uint64_t, transit_message * > tx; typedef std::queue< sendbuf_t > sendqueue_t; llarp_router *router = nullptr; llarp_link_session *parent = nullptr; sendqueue_t sendqueue; /// return true if both sides have the same state flags bool flags_agree(byte_t flags) const { return ((rxflags & flags) & (txflags & flags)) == flags; } void clear() { for(auto &item : rx) delete item.second; rx.clear(); for(auto &item : tx) delete item.second; tx.clear(); } bool inbound_frame_complete(uint64_t id); void push_ackfor(uint64_t id, uint32_t bitmask) { llarp::Debug("ACK for msgid=", id, " mask=", bitmask); sendqueue.emplace(); auto &buf = sendqueue.back(); init_sendbuf(buf, eACKS, 12, txflags); // TODO: this assumes big endian memcpy(buf.data() + 6, &id, 8); memcpy(buf.data() + 14, &bitmask, 4); } bool got_xmit(frame_header &hdr, size_t sz) { if(hdr.size() > sz) { // overflow llarp::Warn("invalid XMIT frame size ", hdr.size(), " > ", sz); return false; } sz = hdr.size(); // extract xmit data xmit x(hdr.data()); const auto bufsz = sizeof(x.buffer); if(sz - bufsz < x.lastfrag()) { // bad size of last fragment llarp::Warn("XMIT frag size missmatch ", sz - bufsz, " < ", x.lastfrag()); return false; } // check LSB set on flags if(x.flags() & 0x01) { auto id = x.msgid(); auto itr = rx.find(id); if(itr == rx.end()) { rx[id] = new transit_message(x); llarp::Debug("got message XMIT with ", (int)x.numfrags(), " fragments"); // inserted, put last fragment rx[id]->put_lastfrag(hdr.data() + sizeof(x.buffer), x.lastfrag()); push_ackfor(id, 0); if(x.numfrags() == 0) { return inbound_frame_complete(id); } return true; } else llarp::Warn("duplicate XMIT msgid=", x.msgid()); } else llarp::Warn("LSB not set on flags"); return false; } void alive() { lastEvent = llarp_time_now_ms(); } bool got_frag(frame_header &hdr, size_t sz) { if(hdr.size() > sz) { // overflow llarp::Warn("invalid FRAG frame size ", hdr.size(), " > ", sz); return false; } sz = hdr.size(); if(sz <= 9) { // underflow llarp::Warn("invalid FRAG frame size ", sz, " <= 9"); return false; } uint64_t msgid; byte_t fragno; // assumes big endian // TODO: implement little endian memcpy(&msgid, hdr.data(), 8); memcpy(&fragno, hdr.data() + 8, 1); auto itr = rx.find(msgid); if(itr == rx.end()) { llarp::Warn("no such RX fragment, msgid=", msgid); return false; } auto fragsize = itr->second->msginfo.fragsize(); if(fragsize != sz - 9) { llarp::Warn("RX fragment size missmatch ", fragsize, " != ", sz - 9); return false; } llarp::Debug("RX got fragment ", (int)fragno, " msgid=", msgid); if(!itr->second->put_frag(fragno, hdr.data() + 9)) { llarp::Warn("inbound message does not have fragment msgid=", msgid, " fragno=", (int)fragno); return false; } auto mask = itr->second->get_bitmask(); if(itr->second->completed()) { push_ackfor(msgid, mask); return inbound_frame_complete(msgid); } else if(itr->second->should_send_ack()) { push_ackfor(msgid, mask); } return true; } bool got_acks(frame_header &hdr, size_t sz); // queue new outbound message void queue_tx(uint64_t id, transit_message *msg) { auto itr = tx.emplace(id, msg); if(itr.second) { msg->generate_xmit(sendqueue, txflags); } else // duplicate delete msg; } // get next frame to encrypt and transmit bool next_frame(llarp_buffer_t &buf) { auto left = sendqueue.size(); llarp::Debug("next frame, ", left, " frames left in send queue"); if(left) { auto &send = sendqueue.front(); buf.base = &send[0]; buf.cur = &send[0]; buf.sz = send.size(); return true; } return false; } void pop_next_frame() { sendqueue.pop(); } bool process(uint8_t *buf, size_t sz) { frame_header hdr(buf); if(hdr.flags() & eSessionInvalidated) { rxflags |= eSessionInvalidated; } switch(hdr.msgtype()) { case eALIV: if(rxflags & eSessionInvalidated) { txflags |= eSessionInvalidated; } return true; case eXMIT: return got_xmit(hdr, sz - 6); case eACKS: return got_acks(hdr, sz - 6); case eFRAG: return got_frag(hdr, sz - 6); default: return false; } } }; struct session { llarp_udp_io *udp; llarp_crypto *crypto; llarp_async_iwp *iwp; llarp_logic *logic; llarp_link_session *parent = nullptr; server *serv = nullptr; llarp_rc *our_router = nullptr; llarp_rc remote_router; llarp_seckey_t eph_seckey; llarp_pubkey_t remote; llarp_sharedkey_t sessionkey; llarp_link_establish_job *establish_job = nullptr; uint32_t establish_job_id = 0; uint32_t frames = 0; llarp::Addr addr; iwp_async_intro intro; iwp_async_introack introack; iwp_async_session_start start; frame_state frame; byte_t token[32]; byte_t workbuf[MAX_PAD + 128]; enum State { eInitial, eIntroRecv, eIntroSent, eIntroAckSent, eIntroAckRecv, eSessionStartSent, eLIMSent, eEstablished, eTimeout }; State state; session(llarp_udp_io *u, llarp_async_iwp *i, llarp_crypto *c, llarp_logic *l, const byte_t *seckey, const llarp::Addr &a) : udp(u), crypto(c), iwp(i), logic(l), addr(a), state(eInitial) { if(seckey) memcpy(eph_seckey, seckey, sizeof(llarp_seckey_t)); else { c->encryption_keygen(eph_seckey); } llarp::Zero(&remote_router, sizeof(llarp_rc)); } ~session() { llarp_rc_free(&remote_router); frame.clear(); } static llarp_rc * get_remote_router(llarp_link_session *s) { session *self = static_cast< session * >(s->impl); return &self->remote_router; } static bool sendto(llarp_link_session *s, llarp_buffer_t msg) { session *self = static_cast< session * >(s->impl); transit_message *m = new transit_message(self); auto id = self->frame.txids++; llarp_hash_t digest; self->crypto->hash(digest, msg); m->put_message(msg, digest, id); self->add_outbound_message(id, m); return true; } void add_outbound_message(uint64_t id, transit_message *msg) { llarp::Debug("add outbound message ", id, " of size ", msg->msginfo.totalsize()); frame.queue_tx(id, msg); pump(); } static void handle_invalidate_timer(void *user); void pump() { llarp_buffer_t buf; while(frame.next_frame(buf)) { encrypt_frame_async_send(buf.base, buf.sz); frame.pop_next_frame(); } } // this is called from net thread void recv(const void *buf, size_t sz) { switch(state) { case eInitial: // got intro on_intro(buf, sz); return; case eIntroSent: // got intro ack on_intro_ack(buf, sz); return; case eIntroAckSent: // probably a session start on_session_start(buf, sz); return; case eSessionStartSent: case eLIMSent: case eEstablished: // session is started decrypt_frame(buf, sz); default: // invalid state? return; } } static void handle_verify_session_start(iwp_async_session_start *s) { session *self = static_cast< session * >(s->user); if(!s->buf) { // verify fail // TODO: remove session? llarp::Warn("session start verify failed"); return; } self->send_LIM(); } void send_LIM() { llarp::Debug("send LIM"); llarp_shorthash_t digest; // 64 bytes overhead for link message byte_t tmp[MAX_RC_SIZE + 64]; auto buf = llarp::StackBuffer< decltype(tmp) >(tmp); // return a llarp_buffer_t of encoded link message if(llarp::EncodeLIM(&buf, our_router)) { // rewind message buffer buf.sz = buf.cur - buf.base; buf.cur = buf.base; auto msg = new transit_message; // hash message buffer crypto->shorthash(digest, buf); // put message buffer auto id = frame.txids++; msg->put_message(buf, digest, id); // put into outbound send queue add_outbound_message(id, msg); EnterState(eLIMSent); } else llarp::Error("LIM Encode failed"); } static void send_keepalive(void *user); // return true if we should be removed bool Tick(uint64_t now) { if(timedout(now, SESSION_TIMEOUT)) { // we are timed out // when we are done doing stuff with all of our frames from the crypto // workers we are done llarp::Debug(addr, " timed out with ", frames, " frames left"); return frames == 0; } if(is_invalidated()) { // both sides agreeed to session invalidation // terminate our session when all of our frames from the crypto workers // are done llarp::Debug(addr, " invaldiated session with ", frames, " frames left"); return frames == 0; } // send keepalive if we are established or a session is made if(state == eEstablished || state == eLIMSent) send_keepalive(this); // TODO: determine if we are too idle return false; } void session_established() { EnterState(eEstablished); llarp_logic_cancel_call(logic, establish_job_id); } void on_session_start(const void *buf, size_t sz) { if(sz > sizeof(workbuf)) { llarp::Debug("session start too big"); return; } // own the buffer memcpy(workbuf, buf, sz); // verify session start start.buf = workbuf; start.sz = sz; start.nonce = workbuf + 32; start.token = token; start.remote_pubkey = remote; start.secretkey = eph_seckey; start.sessionkey = sessionkey; start.user = this; start.hook = &handle_verify_session_start; iwp_call_async_verify_session_start(iwp, &start); } bool timedout(llarp_time_t now, llarp_time_t timeout = SESSION_TIMEOUT) { auto diff = now - frame.lastEvent; return diff >= timeout; } static bool is_timedout(llarp_link_session *s) { auto now = llarp_time_now_ms(); return static_cast< session * >(s->impl)->timedout(now); } static void handle_session_established(void *user) { session *impl = static_cast< session * >(user); impl->session_established(); } static void set_established(llarp_link_session *s) { session *impl = static_cast< session * >(s->impl); llarp_logic_queue_job(impl->logic, {impl, &handle_session_established}); } static void close(llarp_link_session *s) { session *impl = static_cast< session * >(s->impl); // set our side invalidated and close async when the other side also marks // as session invalidated impl->frame.txflags |= eSessionInvalidated; // TODO: add timer for session invalidation llarp_logic_queue_job(impl->logic, {impl, &send_keepalive}); } static void handle_verify_introack(iwp_async_introack *introack) { session *link = static_cast< session * >(introack->user); if(introack->buf == nullptr) { // invalid signature llarp::Error("introack verify failed"); return; } link->EnterState(eIntroAckRecv); // copy decrypted token memcpy(link->token, introack->token, 32); link->session_start(); } static void handle_generated_session_start(iwp_async_session_start *start) { session *link = static_cast< session * >(start->user); llarp_ev_udp_sendto(link->udp, link->addr, start->buf, start->sz); link->EnterState(eSessionStartSent); } bool is_invalidated() const { return frame.flags_agree(eSessionInvalidated); } void session_start() { size_t w2sz = rand() % MAX_PAD; start.buf = workbuf; start.sz = w2sz + (32 * 3); start.nonce = workbuf + 32; crypto->randbytes(start.nonce, 32); start.token = token; memcpy(start.buf + 64, token, 32); if(w2sz) crypto->randbytes(start.buf + (32 * 3), w2sz); start.remote_pubkey = remote; start.secretkey = eph_seckey; start.sessionkey = sessionkey; start.user = this; start.hook = &handle_generated_session_start; iwp_call_async_gen_session_start(iwp, &start); } static void handle_frame_decrypt(iwp_async_frame *frame) { session *self = static_cast< session * >(frame->user); llarp::Debug("rx ", frame->sz, " frames=", self->frames); if(frame->success) { if(self->frame.process(frame->buf + 64, frame->sz - 64)) { self->frame.alive(); self->pump(); } else llarp::Error("invalid frame"); } else llarp::Error("decrypt frame fail"); delete frame; --self->frames; } void decrypt_frame(const void *buf, size_t sz) { if(sz > 64) { auto frame = alloc_frame(buf, sz); frame->hook = &handle_frame_decrypt; iwp_call_async_frame_decrypt(iwp, frame); } else llarp::Warn("short packet of ", sz, " bytes"); } static void handle_frame_encrypt(iwp_async_frame *frame) { session *self = static_cast< session * >(frame->user); llarp::Debug("tx ", frame->sz, " frames=", self->frames); llarp_ev_udp_sendto(self->udp, self->addr, frame->buf, frame->sz); delete frame; --self->frames; } iwp_async_frame * alloc_frame(const void *buf, size_t sz) { // TODO don't hard code 1500 if(sz > 1500) return nullptr; iwp_async_frame *frame = new iwp_async_frame; if(buf) memcpy(frame->buf, buf, sz); frame->sz = sz; frame->user = this; frame->sessionkey = sessionkey; ++frames; return frame; } void encrypt_frame_async_send(const void *buf, size_t sz) { // 64 bytes frame overhead for nonce and hmac auto frame = alloc_frame(nullptr, sz + 64); memcpy(frame->buf + 64, buf, sz); frame->hook = &handle_frame_encrypt; iwp_call_async_frame_encrypt(iwp, frame); } static void handle_verify_intro(iwp_async_intro *intro) { session *self = static_cast< session * >(intro->user); if(!intro->buf) { llarp::Error("intro verify failed"); delete self; return; } self->intro_ack(); } static void handle_introack_generated(iwp_async_introack *i); void intro_ack() { uint16_t w1sz = rand() % MAX_PAD; introack.buf = workbuf; introack.sz = (32 * 3) + w1sz; // randomize padding if(w1sz) crypto->randbytes(introack.buf + (32 * 3), w1sz); // randomize nonce introack.nonce = introack.buf + 32; crypto->randbytes(introack.nonce, 32); // randomize token introack.token = token; crypto->randbytes(introack.token, 32); // keys introack.remote_pubkey = remote; introack.secretkey = eph_seckey; // call introack.user = this; introack.hook = &handle_introack_generated; iwp_call_async_gen_introack(iwp, &introack); } void on_intro(const void *buf, size_t sz) { if(sz >= sizeof(workbuf)) { // too big? llarp::Error("intro too big"); // TOOD: session destroy ? return; } // copy so we own it memcpy(workbuf, buf, sz); intro.buf = workbuf; intro.sz = sz; // give secret key intro.secretkey = eph_seckey; // and nonce intro.nonce = intro.buf + 32; intro.user = this; // set call back hook intro.hook = &handle_verify_intro; // put remote pubkey into this buffer intro.remote_pubkey = remote; // call EnterState(eIntroRecv); iwp_call_async_verify_intro(iwp, &intro); } void on_intro_ack(const void *buf, size_t sz) { if(sz >= sizeof(workbuf)) { // too big? llarp::Error("introack too big"); // TOOD: session destroy ? return; } // copy buffer so we own it memcpy(workbuf, buf, sz); // set intro ack parameters introack.buf = workbuf; introack.sz = sz; introack.nonce = workbuf + 32; introack.remote_pubkey = remote; introack.token = token; introack.secretkey = eph_seckey; introack.user = this; introack.hook = &handle_verify_introack; // async verify iwp_call_async_verify_introack(iwp, &introack); } static void handle_generated_intro(iwp_async_intro *i) { session *link = static_cast< session * >(i->user); if(i->buf) { llarp::Debug("send intro"); if(llarp_ev_udp_sendto(link->udp, link->addr, i->buf, i->sz) == -1) { llarp::Warn("send intro failed"); return; } link->EnterState(eIntroSent); } else { llarp::Warn("failed to generate intro"); } } static void handle_establish_timeout(void *user, uint64_t orig, uint64_t left); void introduce(uint8_t *pub) { memcpy(remote, pub, 32); intro.buf = workbuf; size_t w0sz = (rand() % MAX_PAD); intro.sz = (32 * 3) + w0sz; // randomize w0 if(w0sz) { crypto->randbytes(intro.buf + (32 * 3), w0sz); } intro.nonce = intro.buf + 32; intro.secretkey = eph_seckey; // copy in pubkey intro.remote_pubkey = remote; // randomize nonce crypto->randbytes(intro.nonce, 32); // async generate intro packet intro.user = this; intro.hook = &handle_generated_intro; iwp_call_async_gen_intro(iwp, &intro); // start introduce timer establish_job_id = llarp_logic_call_later( logic, {5000, this, &handle_establish_timeout}); } // handle session being over // called right before deallocation void done(); void EnterState(State st) { frame.alive(); state = st; } }; struct server { typedef std::mutex mtx_t; typedef std::lock_guard< mtx_t > lock_t; llarp_router *router; llarp_logic *logic; llarp_crypto *crypto; llarp_ev_loop *netloop; llarp_async_iwp *iwp; llarp_link *parent = nullptr; llarp_udp_io udp; llarp::Addr addr; char keyfile[255]; uint32_t timeout_job_id; typedef std::unordered_map< llarp::Addr, llarp_link_session, llarp::addrhash > LinkMap_t; LinkMap_t m_sessions; mtx_t m_sessions_Mutex; typedef std::unordered_map< llarp::pubkey, llarp::Addr, llarp::pubkeyhash > SessionMap_t; SessionMap_t m_Connected; mtx_t m_Connected_Mutex; llarp_seckey_t seckey; server(llarp_router *r, llarp_crypto *c, llarp_logic *l, llarp_threadpool *w) { router = r; crypto = c; logic = l; iwp = llarp_async_iwp_new(crypto, logic, w); } ~server() { llarp_async_iwp_free(iwp); } // set that src address has identity pubkey void MapAddr(const llarp::Addr &src, llarp::pubkey identity) { lock_t lock(m_Connected_Mutex); m_Connected[identity] = src; } static bool HasSessionToRouter(llarp_link *l, const byte_t *pubkey) { server *serv = static_cast< server * >(l->impl); lock_t lock(serv->m_Connected_Mutex); return serv->m_Connected.find(pubkey) != serv->m_Connected.end(); } void TickSessions() { auto now = llarp_time_now_ms(); { lock_t lock(m_sessions_Mutex); std::set< llarp::Addr > remove; auto itr = m_sessions.begin(); while(itr != m_sessions.end()) { if(static_cast< session * >(itr->second.impl)->Tick(now)) remove.insert(itr->first); ++itr; } for(const auto &addr : remove) RemoveSessionByAddr(addr); } } static bool SendToSession(llarp_link *l, const byte_t *pubkey, llarp_buffer_t buf) { server *serv = static_cast< server * >(l->impl); { lock_t lock(serv->m_Connected_Mutex); auto itr = serv->m_Connected.find(pubkey); if(itr != serv->m_Connected.end()) { lock_t innerlock(serv->m_sessions_Mutex); auto inner_itr = serv->m_sessions.find(itr->second); if(inner_itr != serv->m_sessions.end()) { auto link = &inner_itr->second; return link->sendto(link, buf); } } } return false; } void UnmapAddr(const llarp::Addr &src) { lock_t lock(m_Connected_Mutex); auto itr = std::find_if( m_Connected.begin(), m_Connected.end(), [src](const auto &item) -> bool { return src == item.second; }); if(itr == std::end(m_Connected)) return; // tell router we are done with this session router->SessionClosed(itr->first); m_Connected.erase(itr); } session * create_session(const llarp::Addr &src, const byte_t *seckey) { auto s = new session(&udp, iwp, crypto, logic, seckey, src); s->serv = this; return s; } bool has_session_to(const llarp::Addr &dst) { lock_t lock(m_sessions_Mutex); return m_sessions.find(dst) != m_sessions.end(); } session * find_session(const llarp::Addr &addr) { lock_t lock(m_sessions_Mutex); auto itr = m_sessions.find(addr); if(itr == m_sessions.end()) return nullptr; else return static_cast< session * >(itr->second.impl); } void put_session(const llarp::Addr &src, session *impl) { llarp_link_session s = {}; s.impl = impl; s.sendto = &session::sendto; s.timeout = &session::is_timedout; s.close = &session::close; s.get_remote_router = &session::get_remote_router; s.established = &session::set_established; { lock_t lock(m_sessions_Mutex); m_sessions[src] = s; impl->parent = &m_sessions[src]; } impl->frame.router = router; impl->frame.parent = impl->parent; impl->our_router = &router->rc; } void clear_sessions() { lock_t lock(m_sessions_Mutex); auto itr = m_sessions.begin(); while(itr != m_sessions.end()) { session *s = static_cast< session * >(itr->second.impl); delete s; itr = m_sessions.erase(itr); } } void RemoveSessionByAddr(const llarp::Addr &addr) { auto itr = m_sessions.find(addr); if(itr != m_sessions.end()) { llarp::Debug("removing session ", addr); UnmapAddr(addr); session *s = static_cast< session * >(itr->second.impl); m_sessions.erase(itr); s->done(); if(s->frames) { llarp::Warn("session has ", s->frames, " left but is idle, not deallocating session so we " "leak but don't die"); } else delete s; } } uint8_t * pubkey() { return llarp_seckey_topublic(seckey); } bool ensure_privkey() { llarp::Debug("ensure transport private key at ", keyfile); std::error_code ec; if(!fs::exists(keyfile, ec)) { if(!keygen(keyfile)) return false; } std::ifstream f(keyfile); if(f.is_open()) { f.read((char *)seckey, sizeof(llarp_seckey_t)); return true; } return false; } bool keygen(const char *fname) { crypto->encryption_keygen(seckey); llarp::Info("new transport key generated"); std::ofstream f(fname); if(f.is_open()) { f.write((char *)seckey, sizeof(llarp_seckey_t)); return true; } return false; } static void handle_cleanup_timer(void *l, uint64_t orig, uint64_t left) { if(left) return; server *link = static_cast< server * >(l); link->timeout_job_id = 0; link->TickSessions(); // TODO: exponential backoff for cleanup timer ? link->issue_cleanup_timer(orig); } // this is called in net threadpool static void handle_recvfrom(struct llarp_udp_io *udp, const struct sockaddr *saddr, const void *buf, ssize_t sz) { server *link = static_cast< server * >(udp->user); session *s = link->find_session(*saddr); if(s == nullptr) { // new inbound session s = link->create_session(*saddr, link->seckey); } s->recv(buf, sz); } void cancel_timer() { if(timeout_job_id) { llarp_logic_cancel_call(logic, timeout_job_id); } timeout_job_id = 0; } void issue_cleanup_timer(uint64_t timeout) { timeout_job_id = llarp_logic_call_later( logic, {timeout, this, &server::handle_cleanup_timer}); } }; bool frame_state::inbound_frame_complete(uint64_t id) { bool success = false; std::vector< byte_t > msg; auto rxmsg = rx[id]; if(rxmsg->reassemble(msg)) { llarp_shorthash_t digest; auto buf = llarp::Buffer< decltype(msg) >(msg); router->crypto.shorthash(digest, buf); if(memcmp(digest, rxmsg->msginfo.hash(), 32)) { llarp::Warn("message hash missmatch ", llarp::AlignedBuffer< 32 >(digest), " != ", llarp::AlignedBuffer< 32 >(rxmsg->msginfo.hash())); return false; } success = router->HandleRecvLinkMessage(parent, buf); if(success) { session *impl = static_cast< session * >(parent->impl); if(id == 0) { // send our LIM if we are an outbound session if(impl->state == session::eSessionStartSent) { impl->send_LIM(); } impl->serv->MapAddr(impl->addr, impl->remote_router.pubkey); } llarp::Info("handled message ", id); } else llarp::Warn("failed to handle inbound message ", id); } else { llarp::Warn("failed to reassemble message ", id); } delete rxmsg; rx.erase(id); return success; } void session::done() { if(establish_job_id) { llarp_logic_remove_call(logic, establish_job_id); } if(establish_job) { auto job = establish_job; job->link = serv->parent; job->session = nullptr; job->result(job); } } void session::send_keepalive(void *user) { session *self = static_cast< session * >(user); // if both sides agree on invalidation if(self->is_invalidated()) { // don't send keepalive return; } // all zeros means keepalive byte_t tmp[MAX_PAD + 8] = {0}; // set flags for tx frame_header hdr(tmp); hdr.flags() = self->frame.txflags; // 8 bytes iwp header overhead int padsz = rand() % (sizeof(tmp) - 8); auto buf = llarp::StackBuffer< decltype(tmp) >(tmp); if(padsz) self->crypto->randbytes(buf.base + 8, padsz); buf.sz -= padsz; // send frame after encrypting self->encrypt_frame_async_send(buf.base, buf.sz); } bool frame_state::got_acks(frame_header &hdr, size_t sz) { if(hdr.size() > sz) { llarp::Error("invalid ACKS frame size ", hdr.size(), " > ", sz); return false; } sz = hdr.size(); if(sz < 12) { llarp::Error("invalid ACKS frame size ", sz, " < 12"); return false; } auto ptr = hdr.data(); uint64_t msgid; uint32_t bitmask; memcpy(&msgid, ptr, 8); memcpy(&bitmask, ptr + 8, 4); auto itr = tx.find(msgid); if(itr == tx.end()) { llarp::Error("ACK for missing TX frame msgid=", msgid); return false; } itr->second->ack(bitmask); if(itr->second->completed()) { llarp::Debug("message transmitted msgid=", msgid); delete itr->second; tx.erase(itr); session *impl = static_cast< session * >(parent->impl); if(impl->state == session::eLIMSent && msgid == 0) { // first message acked we are established? impl->session_established(); } } else { llarp::Debug("message ", msgid, " retransmit fragments"); itr->second->retransmit_frags(sendqueue); } return true; } server * link_alloc(struct llarp_router *router, const char *keyfile, struct llarp_crypto *crypto, struct llarp_logic *logic, struct llarp_threadpool *worker) { server *link = new server(router, crypto, logic, worker); llarp::Zero(link->keyfile, sizeof(link->keyfile)); strncpy(link->keyfile, keyfile, sizeof(link->keyfile)); return link; } const char * link_name() { return "IWP"; } void link_get_addr(struct llarp_link *l, struct llarp_ai *addr) { server *link = static_cast< server * >(l->impl); addr->rank = 1; strncpy(addr->dialect, link_name(), sizeof(addr->dialect)); memcpy(addr->enc_key, link->pubkey(), 32); memcpy(addr->ip.s6_addr, link->addr.addr6(), 16); addr->port = link->addr.port(); } bool link_configure(struct llarp_link *l, struct llarp_ev_loop *netloop, const char *ifname, int af, uint16_t port) { server *link = static_cast< server * >(l->impl); if(!link->ensure_privkey()) { llarp::Error("failed to ensure private key"); return false; } llarp::Debug("configure link ifname=", ifname, " af=", af, " port=", port); // bind sockaddr_in ip4addr; sockaddr_in6 ip6addr; sockaddr *addr = nullptr; switch(af) { case AF_INET: addr = (sockaddr *)&ip4addr; llarp::Zero(addr, sizeof(ip4addr)); break; case AF_INET6: addr = (sockaddr *)&ip6addr; llarp::Zero(addr, sizeof(ip6addr)); break; // TODO: AF_PACKET default: return false; } addr->sa_family = af; if(!llarp::StrEq(ifname, "*")) { if(!llarp_getifaddr(ifname, af, addr)) { llarp::Error("failed to get address of network interface ", ifname); return false; } } switch(af) { case AF_INET: ip4addr.sin_port = htons(port); break; case AF_INET6: ip6addr.sin6_port = htons(port); break; // TODO: AF_PACKET default: return false; } link->addr = *addr; link->netloop = netloop; link->udp.recvfrom = &server::handle_recvfrom; link->udp.user = link; llarp::Debug("bind IWP link to ", link->addr); if(llarp_ev_add_udp(link->netloop, &link->udp, link->addr) == -1) { llarp::Error("failed to bind to ", link->addr); return false; } return true; } bool link_start(struct llarp_link *l, struct llarp_logic *logic) { server *link = static_cast< server * >(l->impl); // give link implementations link->parent = l; link->timeout_job_id = 0; link->logic = logic; // start cleanup timer link->issue_cleanup_timer(1000); return true; } bool link_stop(struct llarp_link *l) { server *link = static_cast< server * >(l->impl); link->cancel_timer(); llarp_ev_close_udp(&link->udp); link->clear_sessions(); return true; } void link_iter_sessions(struct llarp_link *l, struct llarp_link_session_iter iter) { server *link = static_cast< server * >(l->impl); iter.link = l; // TODO: race condition with cleanup timer for(auto &item : link->m_sessions) if(!iter.visit(&iter, &item.second)) return; } bool link_try_establish(struct llarp_link *l, struct llarp_link_establish_job *job) { server *link = static_cast< server * >(l->impl); { llarp::Addr dst(job->ai); llarp::Debug("establish session to ", dst); session *s = link->find_session(dst); if(s == nullptr) { s = link->create_session(dst, nullptr); link->put_session(dst, s); } s->establish_job = job; s->frame.alive(); s->introduce(job->ai.enc_key); } return true; } void link_mark_session_active(struct llarp_link *link, struct llarp_link_session *s) { static_cast< session * >(s->impl)->frame.alive(); } void link_free(struct llarp_link *l) { server *link = static_cast< server * >(l->impl); delete link; } void session::handle_establish_timeout(void *user, uint64_t orig, uint64_t left) { session *self = static_cast< session * >(user); self->establish_job_id = 0; if(self->establish_job) { self->establish_job->link = self->serv->parent; if(left) { // timer cancelled self->establish_job->session = self->parent; } else { // timer timeout self->establish_job->session = nullptr; } self->establish_job->result(self->establish_job); self->establish_job = nullptr; } } void session::handle_introack_generated(iwp_async_introack *i) { session *link = static_cast< session * >(i->user); if(i->buf) { // track it with the server here if(link->serv->has_session_to(link->addr)) { // duplicate session llarp::Warn("duplicate session to ", link->addr); delete link; return; } link->serv->put_session(link->addr, link); llarp::Debug("send introack"); if(llarp_ev_udp_sendto(link->udp, link->addr, i->buf, i->sz) == -1) { llarp::Warn("sendto failed"); return; } llarp::Debug("sent"); link->EnterState(eIntroAckSent); } else { // failed to generate? llarp::Warn("failed to generate introack"); delete link; } } } extern "C" { void iwp_link_init(struct llarp_link *link, struct llarp_iwp_args args) { link->impl = iwp::link_alloc(args.router, args.keyfile, args.crypto, args.logic, args.cryptoworker); link->name = iwp::link_name; link->get_our_address = iwp::link_get_addr; link->configure = iwp::link_configure; link->start_link = iwp::link_start; link->stop_link = iwp::link_stop; link->iter_sessions = iwp::link_iter_sessions; link->try_establish = iwp::link_try_establish; link->has_session_to = iwp::server::HasSessionToRouter; link->sendto = iwp::server::SendToSession; link->mark_session_active = iwp::link_mark_session_active; link->free_impl = iwp::link_free; } }