#include #include #include // for addrinfo #ifndef _WIN32 #include #include #include #else #include #include #include #define inet_aton(x, y) inet_pton(AF_INET, x, y) #endif namespace llarp { Addr::Addr() { } Addr::~Addr() { } Addr::Addr(const Addr& other) { memcpy(&_addr, &other._addr, sizeof(sockaddr_in6)); memcpy(&_addr4, &other._addr4, sizeof(sockaddr_in)); } void Addr::port(uint16_t port) { if(af() == AF_INET) { _addr4.sin_port = htons(port); } _addr.sin6_port = htons(port); } in6_addr* Addr::addr6() { return (in6_addr*)&_addr.sin6_addr.s6_addr[0]; } in_addr* Addr::addr4() { return (in_addr*)&_addr.sin6_addr.s6_addr[12]; } const in6_addr* Addr::addr6() const { return (const in6_addr*)&_addr.sin6_addr.s6_addr[0]; } const in_addr* Addr::addr4() const { return (const in_addr*)&_addr.sin6_addr.s6_addr[12]; } Addr::Addr(string_view str) { this->from_char_array(str); } Addr::Addr(string_view str, const uint16_t p_port) { this->from_char_array(str); this->port(p_port); } Addr::Addr(string_view addr_str, string_view port_str) { this->from_char_array(string_view_string(addr_str).c_str()); this->port(std::strtoul(string_view_string(port_str).c_str(), nullptr, 10)); } bool Addr::from_char_array(string_view in) { auto pPosition = in.find(':'); if(pPosition != string_view::npos) { // parse port uint16_t port = std::atoi(std::string(in.begin() + pPosition + 1, in.end()).c_str()); LogDebug("Setting port ", std::to_string(port)); this->port(port); } Zero(&_addr, sizeof(sockaddr_in6)); struct addrinfo hint, *res = NULL; int ret; memset(&hint, '\0', sizeof hint); hint.ai_family = PF_UNSPEC; hint.ai_flags = AI_NUMERICHOST; if(pPosition != string_view::npos) { ret = getaddrinfo(std::string(in.begin(), in.begin() + pPosition).c_str(), NULL, &hint, &res); } else { ret = getaddrinfo(std::string(in).c_str(), NULL, &hint, &res); } if(ret) { LogError("failed to determine address family: ", in); return false; } if(res->ai_family == AF_INET6) { LogError("IPv6 address not supported yet", in); return false; } if(res->ai_family != AF_INET) { LogError("Address family not supported yet", in); return false; } // put it in _addr4 struct in_addr* addr = &_addr4.sin_addr; if(inet_aton(std::string(in).c_str(), addr) == 0) { LogError("failed to parse ", in); return false; } _addr.sin6_family = res->ai_family; _addr4.sin_family = res->ai_family; _addr4.sin_port = 0; // save a call, 0 is 0 no matter how u arrange it #if((__APPLE__ && __MACH__) || __FreeBSD__) _addr4.sin_len = sizeof(in_addr); #endif // set up SIIT uint8_t* addrptr = _addr.sin6_addr.s6_addr; addrptr[11] = 0xff; addrptr[10] = 0xff; memcpy(12 + addrptr, &addr->s_addr, sizeof(in_addr)); freeaddrinfo(res); return true; } bool Addr::from_4int(const uint8_t one, const uint8_t two, const uint8_t three, const uint8_t four) { Zero(&_addr, sizeof(sockaddr_in6)); struct in_addr* addr = &_addr4.sin_addr; unsigned char* ip = (unsigned char*)&(addr->s_addr); _addr.sin6_family = AF_INET; // set ipv4 mode _addr4.sin_family = AF_INET; _addr4.sin_port = 0; #if((__APPLE__ && __MACH__) || __FreeBSD__) _addr4.sin_len = sizeof(in_addr); #endif // FIXME: watch endian ip[0] = one; ip[1] = two; ip[2] = three; ip[3] = four; // set up SIIT uint8_t* addrptr = _addr.sin6_addr.s6_addr; addrptr[11] = 0xff; addrptr[10] = 0xff; memcpy(12 + addrptr, &addr->s_addr, sizeof(in_addr)); // copy ipv6 SIIT into _addr4 memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr)); return true; } Addr::Addr(const uint8_t one, const uint8_t two, const uint8_t three, const uint8_t four) { this->from_4int(one, two, three, four); } Addr::Addr(const uint8_t one, const uint8_t two, const uint8_t three, const uint8_t four, const uint16_t p_port) { this->from_4int(one, two, three, four); this->port(p_port); } Addr::Addr(const AddressInfo& other) { memcpy(addr6(), other.ip.s6_addr, 16); _addr.sin6_port = htons(other.port); if(ipv6_is_siit(other.ip)) { _addr4.sin_family = AF_INET; _addr4.sin_port = htons(other.port); _addr.sin6_family = AF_INET; memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr)); } else _addr.sin6_family = AF_INET6; } Addr::Addr(const sockaddr_in& other) { Zero(&_addr, sizeof(sockaddr_in6)); _addr.sin6_family = AF_INET; uint8_t* addrptr = _addr.sin6_addr.s6_addr; uint16_t* port = &_addr.sin6_port; // SIIT memcpy(12 + addrptr, &((const sockaddr_in*)(&other))->sin_addr, sizeof(in_addr)); addrptr[11] = 0xff; addrptr[10] = 0xff; *port = ((sockaddr_in*)(&other))->sin_port; _addr4.sin_family = AF_INET; _addr4.sin_port = *port; memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr)); } Addr::Addr(const sockaddr_in6& other) { memcpy(addr6(), other.sin6_addr.s6_addr, 16); _addr.sin6_port = htons(other.sin6_port); auto ptr = &_addr.sin6_addr.s6_addr[0]; // TODO: detect SIIT better if(ptr[11] == 0xff && ptr[10] == 0xff && ptr[9] == 0 && ptr[8] == 0 && ptr[7] == 0 && ptr[6] == 0 && ptr[5] == 0 && ptr[4] == 0 && ptr[3] == 0 && ptr[2] == 0 && ptr[1] == 0 && ptr[0] == 0) { _addr4.sin_family = AF_INET; _addr4.sin_port = htons(other.sin6_port); _addr.sin6_family = AF_INET; memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr)); } else _addr.sin6_family = AF_INET6; } Addr::Addr(const sockaddr& other) { Zero(&_addr, sizeof(sockaddr_in6)); _addr.sin6_family = other.sa_family; uint8_t* addrptr = _addr.sin6_addr.s6_addr; uint16_t* port = &_addr.sin6_port; switch(other.sa_family) { case AF_INET: // SIIT memcpy(12 + addrptr, &((const sockaddr_in*)(&other))->sin_addr, sizeof(in_addr)); addrptr[11] = 0xff; addrptr[10] = 0xff; *port = ((sockaddr_in*)(&other))->sin_port; _addr4.sin_family = AF_INET; _addr4.sin_port = *port; memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr)); break; case AF_INET6: memcpy(addrptr, &((const sockaddr_in6*)(&other))->sin6_addr.s6_addr, 16); *port = ((sockaddr_in6*)(&other))->sin6_port; break; // TODO : sockaddr_ll default: break; } } std::string Addr::ToString() const { std::stringstream ss; ss << (*this); return std::string(ss.str().c_str()); } std::ostream& operator<<(std::ostream& out, const Addr& a) { char tmp[128] = {0}; const void* ptr = nullptr; if(a.af() == AF_INET6) { out << "["; ptr = a.addr6(); } else { ptr = a.addr4(); } if(inet_ntop(a.af(), (void*)ptr, tmp, sizeof(tmp))) { out << tmp; if(a.af() == AF_INET6) out << "]"; } return out << ":" << a.port(); } void Addr::CopyInto(sockaddr* other) const { void *dst, *src; uint16_t* ptr; size_t slen; switch(af()) { case AF_INET: { sockaddr_in* ipv4_dst = (sockaddr_in*)other; dst = (void*)&ipv4_dst->sin_addr.s_addr; src = (void*)&_addr4.sin_addr.s_addr; ptr = &((sockaddr_in*)other)->sin_port; slen = sizeof(in_addr); break; } case AF_INET6: { dst = (void*)((sockaddr_in6*)other)->sin6_addr.s6_addr; src = (void*)_addr.sin6_addr.s6_addr; ptr = &((sockaddr_in6*)other)->sin6_port; slen = sizeof(in6_addr); break; } default: { return; } } memcpy(dst, src, slen); *ptr = htons(port()); other->sa_family = af(); } int Addr::af() const { return _addr.sin6_family; } uint16_t Addr::port() const { return ntohs(_addr.sin6_port); } Addr::operator const sockaddr*() const { if(af() == AF_INET) return (const sockaddr*)&_addr4; return (const sockaddr*)&_addr; } Addr::operator sockaddr*() const { if(af() == AF_INET) return (sockaddr*)&_addr4; return (sockaddr*)&_addr; } bool Addr::operator<(const Addr& other) const { if(af() == AF_INET && other.af() == AF_INET) return port() < other.port() || addr4()->s_addr < other.addr4()->s_addr; return port() < other.port() || *addr6() < *other.addr6() || af() < other.af(); } bool Addr::operator==(const Addr& other) const { if(af() == AF_INET && other.af() == AF_INET) return port() == other.port() && addr4()->s_addr == other.addr4()->s_addr; return af() == other.af() && memcmp(addr6(), other.addr6(), 16) == 0 && port() == other.port(); } Addr& Addr::operator=(const sockaddr& other) { Zero(&_addr, sizeof(sockaddr_in6)); _addr.sin6_family = other.sa_family; uint8_t* addrptr = _addr.sin6_addr.s6_addr; uint16_t* port = &_addr.sin6_port; switch(other.sa_family) { case AF_INET: // SIIT memcpy(12 + addrptr, &((const sockaddr_in*)(&other))->sin_addr, sizeof(in_addr)); addrptr[11] = 0xff; addrptr[10] = 0xff; *port = ((sockaddr_in*)(&other))->sin_port; _addr4.sin_family = AF_INET; _addr4.sin_port = *port; memcpy(&_addr4.sin_addr.s_addr, addr4(), sizeof(in_addr)); break; case AF_INET6: memcpy(addrptr, &((const sockaddr_in6*)(&other))->sin6_addr.s6_addr, 16); *port = ((sockaddr_in6*)(&other))->sin6_port; break; // TODO : sockaddr_ll default: break; } return *this; } bool Addr::sameAddr(const Addr& other) const { return memcmp(addr6(), other.addr6(), 16) == 0; } bool Addr::operator!=(const Addr& other) const { return !(*this == other); } bool Addr::isTenPrivate(uint32_t byte) { uint8_t byte1 = byte >> 24 & 0xff; return byte1 == 10; } bool Addr::isOneSevenPrivate(uint32_t byte) { uint8_t byte1 = byte >> 24 & 0xff; uint8_t byte2 = (0x00ff0000 & byte) >> 16; return byte1 == 172 && (byte2 >= 16 || byte2 <= 31); } bool Addr::isOneNinePrivate(uint32_t byte) { uint8_t byte1 = byte >> 24 & 0xff; uint8_t byte2 = (0x00ff0000 & byte) >> 16; return byte1 == 192 && byte2 == 168; } /// return true if our ipv4 address is a bogon /// TODO: ipv6 bool Addr::IsBogon() const { return IsIPv4Bogon(xtohl()); } socklen_t Addr::SockLen() const { if(af() == AF_INET) return sizeof(sockaddr_in); return sizeof(sockaddr_in6); } bool Addr::isPrivate() const { return IsBogon(); } bool Addr::isLoopback() const { return (ntohl(addr4()->s_addr)) >> 24 == 127; } struct Hash { std::size_t operator()(Addr const& a) const noexcept { if(a.af() == AF_INET) { return a.port() ^ a.addr4()->s_addr; } static const uint8_t empty[16] = {0}; return (a.af() + memcmp(a.addr6(), empty, 16)) ^ a.port(); } }; // end struct Hash } // namespace llarp