#include #include #include #include #include #include #include #include #include "test_util.hpp" #include using namespace llarp; TEST_CASE("test service address from string") { service::Identity ident{}; auto str = ident.pub.Addr().ToString(); service::Address addr; CHECK(addr.FromString(str)); CHECK(addr == ident.pub.Addr()); } TEST_CASE("test service::Identity throws on error") { fs::path p = test::randFilename(); CHECK(not fs::exists(fs::status(p))); test::FileGuard guard(p); std::error_code code; std::fstream file; file.open(p.string(), std::ios::out); CHECK(file.is_open()); file << p; file.close(); service::Identity identity; REQUIRE_THROWS(identity.EnsureKeys(p, false)); } TEST_CASE("test subkey derivation", "[crypto]") { CryptoManager manager(new sodium::CryptoLibSodium()); // These values came out of a run of Tor's test code, so that we can confirm we are doing the same // blinding subkey crypto math as Tor. Our hash value is generated differently so we use the hash // from a Tor random test suite run. AlignedBuffer<32> seed{{ 0xd0, 0x98, 0x9d, 0x83, 0x0e, 0x03, 0xe1, 0x4e, 0xf6, 0xaf, 0x71, 0xa0, 0xa1, 0xfc, 0x88, 0x38, 0xac, 0xfc, 0xd8, 0x95, 0x06, 0x54, 0x9f, 0x3e, 0xdb, 0xb0, 0xf5, 0x3a, 0xc9, 0x0e, 0x47, 0x90, }}; AlignedBuffer<64> root_key_data{{ 0xc0, 0xe6, 0x58, 0xd6, 0x01, 0xc1, 0xb4, 0xc2, 0x94, 0xb8, 0xf7, 0xa3, 0xec, 0x3e, 0x81, 0xd6, 0x82, 0xb4, 0x89, 0x5c, 0x6d, 0xbf, 0x5c, 0x6e, 0x20, 0xad, 0x39, 0x8f, 0xf4, 0x8f, 0x43, 0x4f, 0x56, 0x4f, 0xdc, 0x22, 0x33, 0x19, 0xb9, 0xbb, 0x4e, 0xc0, 0xba, 0x84, 0x2d, 0xe3, 0xde, 0xf2, 0x26, 0xe8, 0xf7, 0xa8, 0x8f, 0x82, 0x41, 0xe3, 0x1f, 0x5d, 0xe5, 0x56, 0x3a, 0xf4, 0x5e, 0x3c, }}; AlignedBuffer<32> root_pub_data{{ 0x4a, 0x34, 0x3f, 0x9e, 0xf3, 0xda, 0x3d, 0x80, 0x07, 0xc7, 0x09, 0xf9, 0x2f, 0x72, 0xd3, 0x76, 0x56, 0x5a, 0x4c, 0x13, 0xdf, 0xb8, 0xce, 0xc8, 0x53, 0x77, 0x0a, 0x99, 0xbc, 0x06, 0xa7, 0xc0, }}; AlignedBuffer<32> hash{{ 0x64, 0xad, 0xde, 0x17, 0x69, 0x33, 0x92, 0x25, 0x9c, 0xa3, 0xd7, 0x85, 0xa5, 0x2d, 0x3a, 0xa5, 0xa3, 0x9c, 0xdb, 0x99, 0x57, 0xac, 0x54, 0x14, 0x4f, 0x11, 0xa9, 0x90, 0xa0, 0xca, 0xcb, 0xfe, }}; AlignedBuffer<64> derived_key_data{{ 0x96, 0x02, 0xba, 0x16, 0x87, 0x40, 0xb7, 0xb6, 0xc9, 0x0f, 0x85, 0x7b, 0xdc, 0xa9, 0x13, 0x9d, 0x1b, 0xf5, 0x01, 0x54, 0xd1, 0xd1, 0x8f, 0x75, 0x06, 0x4d, 0x4c, 0xea, 0x33, 0xc4, 0xc6, 0x00, 0xb0, 0xef, 0x29, 0x37, 0x7c, 0xe9, 0x84, 0x43, 0x5a, 0x79, 0xa2, 0x3b, 0xef, 0xcd, 0x1c, 0x43, 0xf1, 0x88, 0xff, 0x50, 0xaf, 0x9c, 0x07, 0x6a, 0xc6, 0x19, 0xfb, 0xcc, 0x5d, 0x48, 0x75, 0x92, }}; AlignedBuffer<32> derived_pub_data{{ 0x13, 0xa6, 0x61, 0x5b, 0x78, 0x64, 0x03, 0xd4, 0x8a, 0x88, 0xaa, 0x0d, 0x89, 0xdf, 0x08, 0x46, 0xb3, 0x2f, 0xa9, 0xbb, 0xa8, 0xcc, 0xe1, 0xac, 0x4c, 0xae, 0xc9, 0xd2, 0xf1, 0x35, 0xd1, 0x33, }}; SecretKey root{seed}; CHECK(root.toPublic().as_array() == root_pub_data.as_array()); PrivateKey root_key; CHECK(root.toPrivate(root_key)); CHECK(root_key.as_array() == root_key_data.as_array()); auto crypto = CryptoManager::instance(); PrivateKey aprime; // a' CHECK(crypto->derive_subkey_private(aprime, root, 0, &hash)); // We use a different signing hash than Tor // only the private key value (the first 32 bytes) will match: CHECK(std::memcmp(aprime.data(), derived_key_data.data(), 32) == 0); PubKey Aprime; // A' CHECK(crypto->derive_subkey(Aprime, root.toPublic(), 0, &hash)); CHECK(Aprime.as_array() == derived_pub_data.as_array()); } TEST_CASE("test root key signing" , "[crypto]") { CryptoManager manager(new sodium::CryptoLibSodium()); auto crypto = CryptoManager::instance(); SecretKey root_key; crypto->identity_keygen(root_key); // We have our own reimplementation of sodium's signing function which can work with derived // private keys (unlike sodium's built-in which requires starting from a seed). This tests that // signing using either path produces an identical signature. const std::string nibbs = "Nibbler"; llarp_buffer_t nibbs_buf{nibbs.data(), nibbs.size()}; Signature sig_sodium; CHECK(crypto->sign(sig_sodium, root_key, nibbs_buf)); PrivateKey root_privkey; CHECK(root_key.toPrivate(root_privkey)); Signature sig_ours; CHECK(crypto->sign(sig_ours, root_privkey, nibbs_buf)); CHECK(sig_sodium == sig_ours); } TEST_CASE("Test generate derived key", "[crypto]") { CryptoManager manager(new sodium::CryptoLibSodium()); auto crypto = CryptoManager::instance(); SecretKey root_key; crypto->identity_keygen(root_key); PrivateKey root_privkey; CHECK(root_key.toPrivate(root_privkey)); PrivateKey a; PubKey A; CHECK(root_key.toPrivate(a)); CHECK(a.toPublic(A)); CHECK(A == root_key.toPublic()); { // paranoid check to ensure this works as expected PubKey aB; crypto_scalarmult_ed25519_base(aB.data(), a.data()); CHECK(A == aB); } PrivateKey aprime; // a' CHECK(crypto->derive_subkey_private(aprime, root_key, 1)); PubKey Aprime; // A' CHECK(crypto->derive_subkey(Aprime, A, 1)); // We should also be able to derive A' via a': PubKey Aprime_alt; CHECK(aprime.toPublic(Aprime_alt)); CHECK(Aprime == Aprime_alt); // Generate using the same constant and make sure we get an identical privkey (including the // signing hash value) PrivateKey aprime_repeat; CHECK(crypto->derive_subkey_private(aprime_repeat, root_key, 1)); CHECK(aprime_repeat == aprime); // Generate another using a different constant and make sure we get something different PrivateKey a2; PubKey A2; CHECK(crypto->derive_subkey_private(a2, root_key, 2)); CHECK(crypto->derive_subkey(A2, A, 2)); CHECK(A2 != Aprime); CHECK(a2.ToHex().substr(0, 64) != aprime.ToHex().substr(0, 64)); CHECK(a2.ToHex().substr(64) != aprime.ToHex().substr(64)); // The hash should be different too } TEST_CASE("Test signing with derived key", "[crypto]") { CryptoManager manager(new sodium::CryptoLibSodium()); auto crypto = CryptoManager::instance(); SecretKey root_key; crypto->identity_keygen(root_key); PrivateKey root_privkey; root_key.toPrivate(root_privkey); PrivateKey a; PubKey A; root_key.toPrivate(a); a.toPublic(A); PrivateKey aprime; // a' crypto->derive_subkey_private(aprime, root_key, 1); PubKey Aprime; // A' crypto->derive_subkey(Aprime, A, 1); const std::string s = "Jeff loves one-letter variable names."; llarp_buffer_t buf(s.data(), s.size()); Signature sig; CHECK(crypto->sign(sig, aprime, buf)); CHECK(crypto->verify(Aprime, buf, sig)); } TEST_CASE("Test sign and encrypt introset", "[crypto]") { CryptoManager manager(new sodium::CryptoLibSodium()); service::Identity ident; ident.RegenerateKeys(); service::Address addr; CHECK(ident.pub.CalculateAddress(addr.as_array())); service::IntroSet introset; auto now = time_now_ms(); introset.timestampSignedAt = now; while(introset.intros.size() < 10) { service::Introduction intro; intro.expiresAt = now + (path::default_lifetime / 2); intro.router.Randomize(); intro.pathID.Randomize(); introset.intros.emplace_back(std::move(intro)); } const auto maybe = ident.EncryptAndSignIntroSet(introset, now); CHECK(maybe.has_value()); CHECK(maybe->Verify(now)); PubKey blind_key; const PubKey root_key(addr.as_array()); auto crypto = CryptoManager::instance(); CHECK(crypto->derive_subkey(blind_key, root_key, 1)); CHECK(blind_key == maybe->derivedSigningKey); }