#include // harmless on other platforms #define __USE_MINGW_ANSI_STDIO 1 #include #include #ifndef _WIN32 #include #include #endif #include #include #include #include #include #include #include #include namespace llarp { namespace handlers { static llarp_fd_promise * get_tun_fd_promise(llarp_tun_io *tun) { return static_cast< TunEndpoint * >(tun->user)->Promise.get(); } static void tunifTick(llarp_tun_io *tun) { TunEndpoint *self = static_cast< TunEndpoint * >(tun->user); self->Flush(); } TunEndpoint::TunEndpoint(const std::string &nickname, AbstractRouter *r, service::Context *parent) : service::Endpoint(nickname, r, parent) , m_UserToNetworkPktQueue(nickname + "_sendq", r->netloop(), r->netloop()) , m_NetworkToUserPktQueue(nickname + "_recvq", r->netloop(), r->netloop()) , m_Resolver(std::make_shared< dns::Proxy >( r->netloop(), r->logic(), r->netloop(), r->logic(), this)) { std::fill(tunif.ifaddr, tunif.ifaddr + sizeof(tunif.ifaddr), 0); std::fill(tunif.ifname, tunif.ifname + sizeof(tunif.ifname), 0); tunif.netmask = 0; #ifdef ANDROID tunif.get_fd_promise = &get_tun_fd_promise; Promise.reset(new llarp_fd_promise(&m_VPNPromise)); #else tunif.get_fd_promise = nullptr; #endif tunif.user = this; // eh this shouldn't do anything on windows anyway tunif.tick = &tunifTick; tunif.before_write = &tunifBeforeWrite; tunif.recvpkt = &tunifRecvPkt; } util::StatusObject TunEndpoint::ExtractStatus() const { auto obj = service::Endpoint::ExtractStatus(); obj.Put("ifaddr", m_OurRange.ToString()); std::vector< std::string > resolvers; for(const auto &addr : m_UpstreamResolvers) resolvers.emplace_back(addr.ToString()); obj.Put("ustreamResolvers", resolvers); obj.Put("localResolver", m_LocalResolverAddr.ToString()); util::StatusObject ips{}; for(const auto &item : m_IPActivity) { util::StatusObject ipObj{{"lastActive", item.second}}; std::string remoteStr; AlignedBuffer< 32 > addr = m_IPToAddr.at(item.first); if(m_SNodes.at(addr)) remoteStr = RouterID(addr.as_array()).ToString(); else remoteStr = service::Address(addr.as_array()).ToString(); ipObj.Put("remote", remoteStr); std::string ipaddr = item.first.ToString(); ips.Put(ipaddr.c_str(), ipObj); } obj.Put("addrs", ips); obj.Put("ourIP", m_OurIP.ToString()); obj.Put("nextIP", m_NextIP.ToString()); obj.Put("maxIP", m_MaxIP.ToString()); return obj; } bool TunEndpoint::SetOption(const std::string &k, const std::string &v) { if(k == "isolate-network" && IsTrueValue(v.c_str())) { #if defined(__linux__) LogInfo(Name(), " isolating network..."); if(!SpawnIsolatedNetwork()) { LogError(Name(), " failed to spawn isolated network"); return false; } LogInfo(Name(), " booyeah network isolation succeeded"); return true; #else LogError(Name(), " network isolation is not supported on your platform"); return false; #endif } if(k == "strict-connect") { RouterID connect; if(!connect.FromString(v)) { LogError(Name(), " invalid snode for strict-connect: ", v); return false; } RouterContact rc; if(!router->nodedb()->Get(connect, rc)) { LogError(Name(), " we don't have the RC for ", v, " so we can't use it in strict-connect"); return false; } for(const auto &ai : rc.addrs) { m_StrictConnectAddrs.emplace_back(ai); LogInfo(Name(), " added ", m_StrictConnectAddrs.back(), " to strict connect"); } return true; } // Name won't be set because we need to read the config before we can read // the keyfile if(k == "exit-node") { llarp::RouterID exitRouter; if(!(exitRouter.FromString(v) || HexDecode(v.c_str(), exitRouter.begin(), exitRouter.size()))) { llarp::LogError(Name(), " bad exit router key: ", v); return false; } m_Exit = std::make_shared< llarp::exit::ExitSession >( exitRouter, util::memFn(&TunEndpoint::QueueInboundPacketForExit, this), router, numPaths, numHops, ShouldBundleRC()); llarp::LogInfo(Name(), " using exit at ", exitRouter); } if(k == "local-dns") { std::string resolverAddr = v; uint16_t dnsport = 53; auto pos = v.find(":"); if(pos != std::string::npos) { resolverAddr = v.substr(0, pos); dnsport = std::atoi(v.substr(pos + 1).c_str()); } m_LocalResolverAddr = llarp::Addr(resolverAddr, dnsport); llarp::LogInfo(Name(), " binding DNS server to ", m_LocalResolverAddr); } if(k == "upstream-dns") { std::string resolverAddr = v; uint16_t dnsport = 53; auto pos = v.find(":"); if(pos != std::string::npos) { resolverAddr = v.substr(0, pos); dnsport = std::atoi(v.substr(pos + 1).c_str()); } m_UpstreamResolvers.emplace_back(resolverAddr, dnsport); llarp::LogInfo(Name(), " adding upstream DNS server ", resolverAddr, ":", dnsport); } if(k == "mapaddr") { auto pos = v.find(":"); if(pos == std::string::npos) { llarp::LogError("Cannot map address ", v, " invalid format, missing colon (:), expects " "address.loki:ip.address.goes.here"); return false; } service::Address addr; auto addr_str = v.substr(0, pos); if(!addr.FromString(addr_str)) { llarp::LogError(Name() + " cannot map invalid address ", addr_str); return false; } auto ip_str = v.substr(pos + 1); huint32_t ip; huint128_t ipv6; if(ip.FromString(ip_str)) { ipv6 = net::IPPacket::ExpandV4(ip); } else if(ipv6.FromString(ip_str)) { } else { llarp::LogError(Name(), "failed to map ", ip_str, " failed to parse IP"); return false; } return MapAddress(addr, ipv6, false); } if(k == "ifname") { if(v.length() >= sizeof(tunif.ifname)) { llarp::LogError(Name() + " ifname '", v, "' is too long"); return false; } strncpy(tunif.ifname, v.c_str(), sizeof(tunif.ifname) - 1); llarp::LogInfo(Name() + " setting ifname to ", tunif.ifname); return true; } if(k == "ifaddr") { std::string addr; m_UseV6 = addr.find(":") != std::string::npos; auto pos = v.find("/"); if(pos != std::string::npos) { int num; std::string part = v.substr(pos + 1); #if defined(ANDROID) || defined(RPI) num = atoi(part.c_str()); #else num = std::stoi(part); #endif if(num > 0) { tunif.netmask = num; addr = v.substr(0, pos); } else { llarp::LogError("bad ifaddr value: ", v); return false; } } else { if(m_UseV6) tunif.netmask = 128; else tunif.netmask = 32; addr = v; } llarp::LogInfo(Name() + " set ifaddr to ", addr, " with netmask ", tunif.netmask); strncpy(tunif.ifaddr, addr.c_str(), sizeof(tunif.ifaddr) - 1); return true; } return Endpoint::SetOption(k, v); } bool TunEndpoint::HasLocalIP(const huint128_t &ip) const { return m_IPToAddr.find(ip) != m_IPToAddr.end(); } bool TunEndpoint::QueueOutboundTraffic(llarp::net::IPPacket &&pkt) { return m_NetworkToUserPktQueue.EmplaceIf( [](llarp::net::IPPacket &) -> bool { return true; }, std::move(pkt)); } void TunEndpoint::Flush() { auto self = shared_from_this(); FlushSend(); if(m_Exit) { RouterLogic()->queue_func([=] { self->m_Exit->FlushUpstream(); self->Router()->PumpLL(); }); } RouterLogic()->queue_func([=]() { self->Pump(self->Now()); self->Router()->PumpLL(); }); } static bool is_random_snode(const dns::Message &msg) { return msg.questions[0].IsName("random.snode"); } static bool is_localhost_loki(const dns::Message &msg) { return msg.questions[0].IsName("localhost.loki"); } bool TunEndpoint::HandleHookedDNSMessage( dns::Message &&msg, std::function< void(dns::Message) > reply) { // llarp::LogInfo("Tun.HandleHookedDNSMessage ", msg.questions[0].qname, " // of type", msg.questions[0].qtype); if(msg.questions.size() != 1) { llarp::LogWarn("bad number of dns questions: ", msg.questions.size()); return false; } const std::string qname = msg.questions[0].Name(); if(msg.questions[0].qtype == dns::qTypeMX) { // mx record service::Address addr; if(addr.FromString(qname, ".loki") || addr.FromString(qname, ".snode") || is_random_snode(msg) || is_localhost_loki(msg)) msg.AddMXReply(qname, 1); else msg.AddNXReply(); reply(msg); } else if(msg.questions[0].qtype == dns::qTypeCNAME) { if(is_random_snode(msg)) { RouterID random; if(Router()->GetRandomGoodRouter(random)) msg.AddCNAMEReply(random.ToString(), 1); else msg.AddNXReply(); } else if(is_localhost_loki(msg)) { size_t counter = 0; context->ForEachService( [&](const std::string &, const std::shared_ptr< service::Endpoint > &service) -> bool { const service::Address addr = service->GetIdentity().pub.Addr(); msg.AddCNAMEReply(addr.ToString(), 1); ++counter; return true; }); if(counter == 0) msg.AddNXReply(); } else msg.AddNXReply(); reply(msg); } else if(msg.questions[0].qtype == dns::qTypeA || msg.questions[0].qtype == dns::qTypeAAAA) { const bool isV6 = msg.questions[0].qtype == dns::qTypeAAAA && SupportsV6(); const bool isV4 = msg.questions[0].qtype == dns::qTypeA; llarp::service::Address addr; // on MacOS this is a typeA query if(is_random_snode(msg)) { RouterID random; if(Router()->GetRandomGoodRouter(random)) msg.AddCNAMEReply(random.ToString(), 1); else msg.AddNXReply(); } else if(is_localhost_loki(msg)) { size_t counter = 0; context->ForEachService( [&](const std::string &, const std::shared_ptr< service::Endpoint > &service) -> bool { if(!service->HasIfAddr()) return true; huint128_t ip = service->GetIfAddr(); if(ip.h) { msg.AddINReply(ip, isV6); ++counter; } return true; }); if(counter == 0) msg.AddNXReply(); } else if(addr.FromString(qname, ".loki")) { if(isV4 && SupportsV6()) { msg.hdr_fields |= dns::flags_QR | dns::flags_AA | dns::flags_RA; } else if(HasAddress(addr)) { huint128_t ip = ObtainIPForAddr(addr, false); msg.AddINReply(ip, isV6); } else { dns::Message *replyMsg = new dns::Message(std::move(msg)); using service::Address; using service::OutboundContext; return EnsurePathToService( addr, [=](const Address &, OutboundContext *ctx) { SendDNSReply(addr, ctx, replyMsg, reply, false, isV6 || !isV4); }, 2000); } } else if(addr.FromString(qname, ".snode")) { if(isV4 && SupportsV6()) { msg.hdr_fields |= dns::flags_QR | dns::flags_AA | dns::flags_RA; } else { dns::Message *replyMsg = new dns::Message(std::move(msg)); EnsurePathToSNode(addr.as_array(), [=](const RouterID &, exit::BaseSession_ptr s) { SendDNSReply(addr, s, replyMsg, reply, true, isV6); }); return true; } } else msg.AddNXReply(); reply(msg); } else if(msg.questions[0].qtype == dns::qTypePTR) { // reverse dns huint128_t ip = {0}; if(!dns::DecodePTR(msg.questions[0].qname, ip)) { msg.AddNXReply(); reply(msg); return true; } llarp::service::Address addr( ObtainAddrForIP< llarp::service::Address >(ip, true)); if(!addr.IsZero()) { msg.AddAReply(addr.ToString(".snode")); reply(msg); return true; } addr = ObtainAddrForIP< llarp::service::Address >(ip, false); if(!addr.IsZero()) { msg.AddAReply(addr.ToString(".loki")); reply(msg); return true; } msg.AddNXReply(); reply(msg); return true; } else { msg.AddNXReply(); reply(msg); } return true; } void TunEndpoint::ResetInternalState() { service::Endpoint::ResetInternalState(); if(m_Exit) m_Exit->ResetInternalState(); } bool TunEndpoint::SupportsV6() const { return m_UseV6; } // FIXME: pass in which question it should be addressing bool TunEndpoint::ShouldHookDNSMessage(const dns::Message &msg) const { llarp::service::Address addr; if(msg.questions.size() == 1) { /// hook every .loki if(msg.questions[0].HasTLD(".loki")) return true; /// hook every .snode if(msg.questions[0].HasTLD(".snode")) return true; // hook any ranges we own if(msg.questions[0].qtype == llarp::dns::qTypePTR) { huint128_t ip = {0}; if(!dns::DecodePTR(msg.questions[0].qname, ip)) return false; return m_OurRange.Contains(ip); } } return false; } bool TunEndpoint::MapAddress(const service::Address &addr, huint128_t ip, bool SNode) { auto itr = m_IPToAddr.find(ip); if(itr != m_IPToAddr.end()) { llarp::LogWarn(ip, " already mapped to ", service::Address(itr->second.as_array()).ToString()); return false; } llarp::LogInfo(Name() + " map ", addr.ToString(), " to ", ip); m_IPToAddr[ip] = addr; m_AddrToIP[addr] = ip; m_SNodes[addr] = SNode; MarkIPActiveForever(ip); return true; } bool TunEndpoint::Start() { if(!Endpoint::Start()) { llarp::LogWarn("Couldn't start endpoint"); return false; } if(m_Exit) { for(const auto &snode : SnodeBlacklist()) m_Exit->BlacklistSnode(snode); } return SetupNetworking(); } bool TunEndpoint::IsSNode() const { // TODO : implement me return false; } bool TunEndpoint::SetupTun() { auto loop = EndpointNetLoop(); if(!llarp_ev_add_tun(loop.get(), &tunif)) { llarp::LogError(Name(), " failed to set up tun interface: ", tunif.ifaddr, " on ", tunif.ifname); return false; } struct addrinfo hint, *res = NULL; int ret; memset(&hint, 0, sizeof hint); hint.ai_family = PF_UNSPEC; hint.ai_flags = AI_NUMERICHOST; ret = getaddrinfo(tunif.ifaddr, NULL, &hint, &res); if(ret) { llarp::LogError(Name(), " failed to set up tun interface, cant determine " "family from ", tunif.ifaddr); return false; } /* // output is in network byte order unsigned char buf[sizeof(struct in6_addr)]; int s = inet_pton(res->ai_family, tunif.ifaddr, buf); if (s <= 0) { llarp::LogError(Name(), " failed to set up tun interface, cant parse ", tunif.ifaddr); return false; } */ if(res->ai_family == AF_INET6) { m_UseV6 = true; } freeaddrinfo(res); if(m_UseV6) { llarp::LogInfo(Name(), " using IPV6"); } else { struct in_addr addr; // network byte order if(inet_aton(tunif.ifaddr, &addr) == 0) { llarp::LogError(Name(), " failed to set up tun interface, cant parse ", tunif.ifaddr); return false; } } huint32_t ip; if(ip.FromString(tunif.ifaddr)) { m_OurIP = net::IPPacket::ExpandV4(ip); m_OurRange.netmask_bits = netmask_ipv6_bits(tunif.netmask + 96); } else if(m_OurIP.FromString(tunif.ifaddr)) { m_OurRange.netmask_bits = netmask_ipv6_bits(tunif.netmask); } m_NextIP = m_OurIP; m_OurRange.addr = m_OurIP; m_MaxIP = m_OurIP | (~m_OurRange.netmask_bits); llarp::LogInfo(Name(), " set ", tunif.ifname, " to have address ", m_OurIP); llarp::LogInfo(Name(), " allocated up to ", m_MaxIP, " on range ", m_OurRange); MapAddress(m_Identity.pub.Addr(), m_OurIP, IsSNode()); if(m_OnUp) { m_OnUp->NotifyAsync(NotifyParams()); } return true; } std::unordered_map< std::string, std::string > TunEndpoint::NotifyParams() const { auto env = Endpoint::NotifyParams(); env.emplace("IP_ADDR", m_OurIP.ToString()); env.emplace("IF_ADDR", m_OurRange.ToString()); env.emplace("IF_NAME", tunif.ifname); std::string strictConnect; for(const auto &addr : m_StrictConnectAddrs) strictConnect += addr.ToString() + " "; env.emplace("STRICT_CONNECT_ADDRS", strictConnect); return env; } bool TunEndpoint::SetupNetworking() { llarp::LogInfo("Set Up networking for ", Name()); if(!SetupTun()) { llarp::LogError(Name(), " failed to set up network interface"); return false; } if(!m_Resolver->Start(m_LocalResolverAddr, m_UpstreamResolvers)) { // downgrade DNS server failure to a warning llarp::LogWarn(Name(), " failed to start dns server"); // return false; } return true; } void TunEndpoint::Tick(llarp_time_t now) { // call tun code in endpoint logic in case of network isolation // EndpointLogic()->queue_job({this, handleTickTun}); if(m_Exit) { EnsureRouterIsKnown(m_Exit->Endpoint()); m_Exit->Tick(now); } Endpoint::Tick(now); } bool TunEndpoint::Stop() { if(m_Exit) m_Exit->Stop(); return llarp::service::Endpoint::Stop(); } void TunEndpoint::FlushSend() { m_UserToNetworkPktQueue.Process([&](net::IPPacket &pkt) { std::function< bool(const llarp_buffer_t &) > sendFunc; huint128_t dst; if(pkt.IsV4()) dst = net::IPPacket::ExpandV4(pkt.dstv4()); else dst = pkt.dstv6(); auto itr = m_IPToAddr.find(dst); if(itr == m_IPToAddr.end()) { if(m_Exit && pkt.IsV4() && !llarp::IsIPv4Bogon(pkt.dstv4())) { pkt.UpdateIPv4Address({0}, xhtonl(pkt.dstv4())); m_Exit->QueueUpstreamTraffic(std::move(pkt), llarp::routing::ExitPadSize); } else if(m_Exit && pkt.IsV6()) { pkt.UpdateIPv6Address({0}, pkt.dstv6()); m_Exit->QueueUpstreamTraffic(std::move(pkt), llarp::routing::ExitPadSize); } else { llarp::LogWarn(Name(), " has no endpoint for ", dst); llarp::DumpBuffer(pkt.ConstBuffer()); } return; } if(m_SNodes.at(itr->second)) { sendFunc = std::bind(&TunEndpoint::SendToSNodeOrQueue, this, itr->second.as_array(), std::placeholders::_1); } else { sendFunc = std::bind(&TunEndpoint::SendToServiceOrQueue, this, service::Address(itr->second.as_array()), std::placeholders::_1, pkt.ServiceProtocol()); } // prepare packet for insertion into network // this includes clearing IP addresses, recalculating checksums, etc if(pkt.IsV4()) pkt.UpdateIPv4Address({0}, {0}); else pkt.UpdateIPv6Address({0}, {0}); if(sendFunc && sendFunc(pkt.Buffer())) { MarkIPActive(dst); return; } llarp::LogWarn(Name(), " did not flush packets"); }); } bool TunEndpoint::HandleWriteIPPacket( const llarp_buffer_t &b, std::function< huint128_t(void) > getFromIP) { // llarp::LogInfo("got packet from ", msg->sender.Addr()); auto themIP = getFromIP(); // llarp::LogInfo("themIP ", themIP); auto usIP = m_OurIP; ManagedBuffer buf(b); return m_NetworkToUserPktQueue.EmplaceIf( [buf, themIP, usIP](net::IPPacket &pkt) -> bool { // load if(!pkt.Load(buf)) return false; // filter out: // - packets smaller than minimal IPv4 header // - non-IPv4 packets // - packets with weird src/dst addresses // (0.0.0.0/8 but not 0.0.0.0) // - packets with 0 src but non-0 dst and oposite if(pkt.IsV4()) { auto hdr = pkt.Header(); if(pkt.sz < sizeof(*hdr) || (hdr->saddr != 0 && *(byte_t *)&(hdr->saddr) == 0) || (hdr->daddr != 0 && *(byte_t *)&(hdr->daddr) == 0) || ((hdr->saddr == 0) != (hdr->daddr == 0))) { return false; } pkt.UpdateIPv4Address(xhtonl(net::IPPacket::TruncateV6(themIP)), xhtonl(net::IPPacket::TruncateV6(usIP))); } else if(pkt.IsV6()) { pkt.UpdateIPv6Address(themIP, usIP); } return true; }); } huint128_t TunEndpoint::GetIfAddr() const { return m_OurIP; } huint128_t TunEndpoint::ObtainIPForAddr(const AlignedBuffer< 32 > &addr, bool snode) { llarp_time_t now = Now(); huint128_t nextIP = {0}; AlignedBuffer< 32 > ident(addr); { // previously allocated address auto itr = m_AddrToIP.find(ident); if(itr != m_AddrToIP.end()) { // mark ip active MarkIPActive(itr->second); return itr->second; } } // allocate new address if(m_NextIP < m_MaxIP) { do { nextIP = ++m_NextIP; } while(m_IPToAddr.find(nextIP) != m_IPToAddr.end() && m_NextIP < m_MaxIP); if(nextIP < m_MaxIP) { m_AddrToIP[ident] = nextIP; m_IPToAddr[nextIP] = ident; m_SNodes[ident] = snode; llarp::LogInfo(Name(), " mapped ", ident, " to ", nextIP); MarkIPActive(nextIP); return nextIP; } } // we are full // expire least active ip // TODO: prevent DoS std::pair< huint128_t, llarp_time_t > oldest = {huint128_t{0}, 0}; // find oldest entry auto itr = m_IPActivity.begin(); while(itr != m_IPActivity.end()) { if(itr->second <= now) { if((now - itr->second) > oldest.second) { oldest.first = itr->first; oldest.second = itr->second; } } ++itr; } // remap address m_IPToAddr[oldest.first] = ident; m_AddrToIP[ident] = oldest.first; m_SNodes[ident] = snode; nextIP = oldest.first; // mark ip active m_IPActivity[nextIP] = std::max(m_IPActivity[nextIP], now); return nextIP; } bool TunEndpoint::HasRemoteForIP(huint128_t ip) const { return m_IPToAddr.find(ip) != m_IPToAddr.end(); } void TunEndpoint::MarkIPActive(huint128_t ip) { llarp::LogDebug(Name(), " address ", ip, " is active"); m_IPActivity[ip] = std::max(Now(), m_IPActivity[ip]); } void TunEndpoint::MarkIPActiveForever(huint128_t ip) { m_IPActivity[ip] = std::numeric_limits< uint64_t >::max(); } void TunEndpoint::TickTun(__attribute__((unused)) llarp_time_t now) { // called in the isolated thread } void TunEndpoint::tunifBeforeWrite(llarp_tun_io *tun) { // called in the isolated network thread TunEndpoint *self = static_cast< TunEndpoint * >(tun->user); // flush user to network self->FlushSend(); // flush exit traffic queues if it's there if(self->m_Exit) { self->m_Exit->FlushDownstream(); } // flush network to user self->m_NetworkToUserPktQueue.Process([tun](net::IPPacket &pkt) { if(!llarp_ev_tun_async_write(tun, pkt.Buffer())) llarp::LogWarn("packet dropped"); }); } void TunEndpoint::tunifRecvPkt(llarp_tun_io *tun, const llarp_buffer_t &b) { // called for every packet read from user in isolated network thread TunEndpoint *self = static_cast< TunEndpoint * >(tun->user); const ManagedBuffer buf(b); self->m_UserToNetworkPktQueue.EmplaceIf( [&buf](net::IPPacket &pkt) -> bool { return pkt.Load(buf); }); } TunEndpoint::~TunEndpoint() { } } // namespace handlers } // namespace llarp