#include #include #include #include #include #ifndef _WIN32 #include #endif #include #include constexpr uint32_t ipv6_flowlabel_mask = 0b0000'0000'0000'1111'1111'1111'1111'1111; void ipv6_header::FlowLabel(llarp::nuint32_t label) { // the ipv6 flow label is the last 20 bits in the first 32 bits of the header preamble.flowlabel = (htonl(ipv6_flowlabel_mask) & label.n) | (preamble.flowlabel & htonl(~ipv6_flowlabel_mask)); } llarp::nuint32_t ipv6_header::FlowLabel() const { return llarp::nuint32_t{preamble.flowlabel & htonl(ipv6_flowlabel_mask)}; } namespace llarp { namespace net { inline static uint32_t* in6_uint32_ptr(in6_addr& addr) { return (uint32_t*)addr.s6_addr; } inline static const uint32_t* in6_uint32_ptr(const in6_addr& addr) { return (uint32_t*)addr.s6_addr; } huint128_t IPPacket::srcv6() const { if (IsV6()) return In6ToHUInt(HeaderV6()->srcaddr); return ExpandV4(srcv4()); } huint128_t IPPacket::dstv6() const { if (IsV6()) return In6ToHUInt(HeaderV6()->dstaddr); return ExpandV4(dstv4()); } bool IPPacket::Load(const llarp_buffer_t& pkt) { if (pkt.sz > sizeof(buf) or pkt.sz == 0) return false; sz = pkt.sz; std::copy_n(pkt.base, sz, buf); return true; } ManagedBuffer IPPacket::ConstBuffer() const { const byte_t* ptr = buf; llarp_buffer_t b(ptr, sz); return ManagedBuffer(b); } ManagedBuffer IPPacket::Buffer() { byte_t* ptr = buf; llarp_buffer_t b(ptr, sz); return ManagedBuffer(b); } huint32_t IPPacket::srcv4() const { return huint32_t{ntohl(Header()->saddr)}; } huint32_t IPPacket::dstv4() const { return huint32_t{ntohl(Header()->daddr)}; } huint128_t IPPacket::dst4to6() const { return ExpandV4(dstv4()); } huint128_t IPPacket::src4to6() const { return ExpandV4(srcv4()); } static uint16_t ipchksum(const byte_t* buf, size_t sz, uint32_t sum = 0) { while (sz > 1) { sum += *(const uint16_t*)buf; sz -= sizeof(uint16_t); buf += sizeof(uint16_t); } if (sz != 0) { uint16_t x = 0; *(byte_t*)&x = *(const byte_t*)buf; sum += x; } // only need to do it 2 times to be sure // proof: 0xFFff + 0xFFff = 0x1FFfe -> 0xFFff sum = (sum & 0xFFff) + (sum >> 16); sum += sum >> 16; return uint16_t((~sum) & 0xFFff); } #define ADD32CS(x) ((uint32_t)(x & 0xFFff) + (uint32_t)(x >> 16)) #define SUB32CS(x) ((uint32_t)((~x) & 0xFFff) + (uint32_t)((~x) >> 16)) static nuint16_t deltaIPv4Checksum( nuint16_t old_sum, nuint32_t old_src_ip, nuint32_t old_dst_ip, nuint32_t new_src_ip, nuint32_t new_dst_ip) { uint32_t sum = uint32_t(old_sum.n) + ADD32CS(old_src_ip.n) + ADD32CS(old_dst_ip.n) + SUB32CS(new_src_ip.n) + SUB32CS(new_dst_ip.n); // only need to do it 2 times to be sure // proof: 0xFFff + 0xFFff = 0x1FFfe -> 0xFFff sum = (sum & 0xFFff) + (sum >> 16); sum += sum >> 16; return nuint16_t{uint16_t(sum & 0xFFff)}; } static nuint16_t deltaIPv6Checksum( nuint16_t old_sum, const uint32_t old_src_ip[4], const uint32_t old_dst_ip[4], const uint32_t new_src_ip[4], const uint32_t new_dst_ip[4]) { /* we don't actually care in what way integers are arranged in memory * internally */ /* as long as uint16 pairs are swapped in correct direction, result will * be correct (assuming there are no gaps in structure) */ /* we represent 128bit stuff there as 4 32bit ints, that should be more or * less correct */ /* we could do 64bit ints too but then we couldn't reuse 32bit macros and * that'd suck for 32bit cpus */ #define ADDN128CS(x) (ADD32CS(x[0]) + ADD32CS(x[1]) + ADD32CS(x[2]) + ADD32CS(x[3])) #define SUBN128CS(x) (SUB32CS(x[0]) + SUB32CS(x[1]) + SUB32CS(x[2]) + SUB32CS(x[3])) uint32_t sum = uint32_t(old_sum.n) + ADDN128CS(old_src_ip) + ADDN128CS(old_dst_ip) + SUBN128CS(new_src_ip) + SUBN128CS(new_dst_ip); #undef ADDN128CS #undef SUBN128CS // only need to do it 2 times to be sure // proof: 0xFFff + 0xFFff = 0x1FFfe -> 0xFFff sum = (sum & 0xFFff) + (sum >> 16); sum += sum >> 16; return nuint16_t{uint16_t(sum & 0xFFff)}; } #undef ADD32CS #undef SUB32CS static void deltaChecksumIPv4TCP( byte_t* pld, size_t psz, size_t fragoff, size_t chksumoff, nuint32_t oSrcIP, nuint32_t oDstIP, nuint32_t nSrcIP, nuint32_t nDstIP) { if (fragoff > chksumoff || psz < chksumoff - fragoff + 2) return; auto check = (nuint16_t*)(pld + chksumoff - fragoff); *check = deltaIPv4Checksum(*check, oSrcIP, oDstIP, nSrcIP, nDstIP); // usually, TCP checksum field cannot be 0xFFff, // because one's complement addition cannot result in 0x0000, // and there's inversion in the end; // emulate that. if (check->n == 0xFFff) check->n = 0x0000; } static void deltaChecksumIPv6TCP( byte_t* pld, size_t psz, size_t fragoff, size_t chksumoff, const uint32_t oSrcIP[4], const uint32_t oDstIP[4], const uint32_t nSrcIP[4], const uint32_t nDstIP[4]) { if (fragoff > chksumoff || psz < chksumoff - fragoff + 2) return; auto check = (nuint16_t*)(pld + chksumoff - fragoff); *check = deltaIPv6Checksum(*check, oSrcIP, oDstIP, nSrcIP, nDstIP); // usually, TCP checksum field cannot be 0xFFff, // because one's complement addition cannot result in 0x0000, // and there's inversion in the end; // emulate that. if (check->n == 0xFFff) check->n = 0x0000; } static void deltaChecksumIPv4UDP( byte_t* pld, size_t psz, size_t fragoff, nuint32_t oSrcIP, nuint32_t oDstIP, nuint32_t nSrcIP, nuint32_t nDstIP) { if (fragoff > 6 || psz < 6 + 2) return; auto check = (nuint16_t*)(pld + 6); if (check->n == 0x0000) return; // 0 is used to indicate "no checksum", don't change *check = deltaIPv4Checksum(*check, oSrcIP, oDstIP, nSrcIP, nDstIP); // 0 is used to indicate "no checksum" // 0xFFff and 0 are equivalent in one's complement math // 0xFFff + 1 = 0x10000 -> 0x0001 (same as 0 + 1) // infact it's impossible to get 0 with such addition, // when starting from non-0 value. // inside deltachksum we don't invert so it's safe to skip check there // if(check->n == 0x0000) // check->n = 0xFFff; } static void deltaChecksumIPv6UDP( byte_t* pld, size_t psz, size_t fragoff, const uint32_t oSrcIP[4], const uint32_t oDstIP[4], const uint32_t nSrcIP[4], const uint32_t nDstIP[4]) { if (fragoff > 6 || psz < 6 + 2) return; auto check = (nuint16_t*)(pld + 6); // 0 is used to indicate "no checksum", don't change // even tho this shouldn't happen for IPv6, handle it properly // we actually should drop/log 0-checksum packets per spec // but that should be done at upper level than this function // it's better to do correct thing there regardless // XXX or maybe we should change this function to be able to return error? // either way that's not a priority if (check->n == 0x0000) return; *check = deltaIPv6Checksum(*check, oSrcIP, oDstIP, nSrcIP, nDstIP); // 0 is used to indicate "no checksum" // 0xFFff and 0 are equivalent in one's complement math // 0xFFff + 1 = 0x10000 -> 0x0001 (same as 0 + 1) // infact it's impossible to get 0 with such addition, // when starting from non-0 value. // inside deltachksum we don't invert so it's safe to skip check there // if(check->n == 0x0000) // check->n = 0xFFff; } void IPPacket::UpdateIPv4Address(nuint32_t nSrcIP, nuint32_t nDstIP) { llarp::LogDebug("set src=", nSrcIP, " dst=", nDstIP); auto hdr = Header(); auto oSrcIP = nuint32_t{hdr->saddr}; auto oDstIP = nuint32_t{hdr->daddr}; // L4 checksum auto ihs = size_t(hdr->ihl * 4); if (ihs <= sz) { auto pld = buf + ihs; auto psz = sz - ihs; auto fragoff = size_t((ntohs(hdr->frag_off) & 0x1Fff) * 8); switch (hdr->protocol) { case 6: // TCP deltaChecksumIPv4TCP(pld, psz, fragoff, 16, oSrcIP, oDstIP, nSrcIP, nDstIP); break; case 17: // UDP case 136: // UDP-Lite - same checksum place, same 0->0xFFff condition deltaChecksumIPv4UDP(pld, psz, fragoff, oSrcIP, oDstIP, nSrcIP, nDstIP); break; case 33: // DCCP deltaChecksumIPv4TCP(pld, psz, fragoff, 6, oSrcIP, oDstIP, nSrcIP, nDstIP); break; } } // IPv4 checksum auto v4chk = (nuint16_t*)&(hdr->check); *v4chk = deltaIPv4Checksum(*v4chk, oSrcIP, oDstIP, nSrcIP, nDstIP); // write new IP addresses hdr->saddr = nSrcIP.n; hdr->daddr = nDstIP.n; } void IPPacket::UpdateIPv6Address(huint128_t src, huint128_t dst, std::optional flowlabel) { const size_t ihs = 4 + 4 + 16 + 16; // XXX should've been checked at upper level? if (sz <= ihs) return; auto hdr = HeaderV6(); if (flowlabel.has_value()) { // set flow label if desired hdr->FlowLabel(*flowlabel); } const auto oldSrcIP = hdr->srcaddr; const auto oldDstIP = hdr->dstaddr; const uint32_t* oSrcIP = in6_uint32_ptr(oldSrcIP); const uint32_t* oDstIP = in6_uint32_ptr(oldDstIP); // IPv6 address hdr->srcaddr = HUIntToIn6(src); hdr->dstaddr = HUIntToIn6(dst); const uint32_t* nSrcIP = in6_uint32_ptr(hdr->srcaddr); const uint32_t* nDstIP = in6_uint32_ptr(hdr->dstaddr); // TODO IPv6 header options auto pld = buf + ihs; auto psz = sz - ihs; size_t fragoff = 0; auto nextproto = hdr->proto; for (;;) { switch (nextproto) { case 0: // Hop-by-Hop Options case 43: // Routing Header case 60: // Destination Options { nextproto = pld[0]; auto addlen = (size_t(pld[1]) + 1) * 8; if (psz < addlen) return; pld += addlen; psz -= addlen; break; } case 44: // Fragment Header /* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Next Header | Reserved | Fragment Offset |Res|M| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ nextproto = pld[0]; fragoff = (uint16_t(pld[2]) << 8) | (uint16_t(pld[3]) & 0xFC); if (psz < 8) return; pld += 8; psz -= 8; // jump straight to payload processing if (fragoff != 0) goto endprotohdrs; break; default: goto endprotohdrs; } } endprotohdrs: switch (nextproto) { case 6: // TCP deltaChecksumIPv6TCP(pld, psz, fragoff, 16, oSrcIP, oDstIP, nSrcIP, nDstIP); break; case 17: // UDP case 136: // UDP-Lite - same checksum place, same 0->0xFFff condition deltaChecksumIPv6UDP(pld, psz, fragoff, oSrcIP, oDstIP, nSrcIP, nDstIP); break; case 33: // DCCP deltaChecksumIPv6TCP(pld, psz, fragoff, 6, oSrcIP, oDstIP, nSrcIP, nDstIP); break; } } void IPPacket::ZeroAddresses(std::optional flowlabel) { if (IsV4()) { UpdateIPv4Address({0}, {0}); } else if (IsV6()) { UpdateIPv6Address({0}, {0}, flowlabel); } } void IPPacket::ZeroSourceAddress(std::optional flowlabel) { if (IsV4()) { UpdateIPv4Address({0}, xhtonl(dstv4())); } else if (IsV6()) { UpdateIPv6Address({0}, {ntoh128(dstv6().h)}, flowlabel); } } std::optional IPPacket::MakeICMPUnreachable() const { if (IsV4()) { constexpr auto icmp_Header_size = 8; constexpr auto ip_Header_size = 20; net::IPPacket pkt{}; auto* pkt_Header = pkt.Header(); pkt_Header->version = 4; pkt_Header->ihl = 0x05; pkt_Header->tos = 0; pkt_Header->check = 0; pkt_Header->tot_len = ntohs(icmp_Header_size + ip_Header_size); pkt_Header->saddr = Header()->daddr; pkt_Header->daddr = Header()->saddr; pkt_Header->protocol = 1; // ICMP pkt_Header->ttl = 1; pkt_Header->frag_off = htons(0b0100000000000000); // size pf ip header const size_t l3_HeaderSize = Header()->ihl * 4; // size of l4 packet to reflect back const size_t l4_PacketSize = 8; pkt_Header->tot_len += ntohs(l4_PacketSize + l3_HeaderSize); uint16_t* checksum; uint8_t* itr = pkt.buf + (pkt_Header->ihl * 4); uint8_t* icmp_begin = itr; // type 'destination unreachable' *itr++ = 3; // code 'Destination host unknown error' *itr++ = 7; // checksum + unused htobe32buf(itr, 0); checksum = (uint16_t*)itr; itr += 4; // next hop mtu is ignored but let's put something here anyways just in case tm htobe16buf(itr, 1500); itr += 2; // copy ip header and first 8 bytes of datagram for icmp rject std::copy_n(buf, l4_PacketSize + l3_HeaderSize, itr); itr += l4_PacketSize + l3_HeaderSize; // calculate checksum of ip header pkt_Header->check = ipchksum(pkt.buf, pkt_Header->ihl * 4); const auto icmp_size = std::distance(icmp_begin, itr); // calculate icmp checksum *checksum = ipchksum(icmp_begin, icmp_size); pkt.sz = ntohs(pkt_Header->tot_len); return pkt; } return std::nullopt; } } // namespace net } // namespace llarp