#include #include #include #include #include #ifdef __EMSCRIPTEN__ #include #endif #include #include #include #include #include /* C++Builder defines a "random" macro */ #undef random static const randombytes_implementation *implementation = &randombytes_salsa20_implementation; static void randombytes_init_if_needed(void) { if(implementation == NULL) implementation = &randombytes_salsa20_implementation; } int randombytes_set_implementation(randombytes_implementation *impl) { implementation = impl; return 0; } const char * randombytes_implementation_name(void) { #ifndef __EMSCRIPTEN__ randombytes_init_if_needed(); return implementation->implementation_name(); #else return "js"; #endif } uint32_t randombytes_random(void) { #ifndef __EMSCRIPTEN__ randombytes_init_if_needed(); return implementation->random(); #else return EM_ASM_INT_V({ return Module.getRandomValue(); }); #endif } void randombytes_stir(void) { #ifndef __EMSCRIPTEN__ randombytes_init_if_needed(); if(implementation->stir != NULL) { implementation->stir(); } #else EM_ASM({ if(Module.getRandomValue == = undefined) { try { var window_ = 'object' == = typeof window ? window : self; var crypto_ = typeof window_.crypto != = 'undefined' ? window_.crypto : window_.msCrypto; var randomValuesStandard = function() { var buf = new Uint32Array(1); crypto_.getRandomValues(buf); return buf[0] >>> 0; }; randomValuesStandard(); Module.getRandomValue = randomValuesStandard; } catch(e) { try { var crypto = require('crypto'); var randomValueNodeJS = function() { var buf = crypto['randomBytes'](4); return (buf[0] << 24 | buf[1] << 16 | buf[2] << 8 | buf[3]) >>> 0; }; randomValueNodeJS(); Module.getRandomValue = randomValueNodeJS; } catch(e) { throw 'No secure random number generator found'; } } } }); #endif } uint32_t randombytes_uniform(const uint32_t upper_bound) { uint32_t min; uint32_t r; #ifndef __EMSCRIPTEN__ randombytes_init_if_needed(); if(implementation->uniform != NULL) { return implementation->uniform(upper_bound); } #endif if(upper_bound < 2) { return 0; } min = (1U + ~upper_bound) % upper_bound; /* = 2**32 mod upper_bound */ do { r = randombytes_random(); } while(r < min); /* r is now clamped to a set whose size mod upper_bound == 0 * the worst case (2**31+1) requires ~ 2 attempts */ return r % upper_bound; } void randombytes_buf(void *const buf, const size_t size) { randombytes_init_if_needed(); if(size > (size_t)0U) { implementation->buf(buf, size); } } void randombytes_buf_deterministic(void *const buf, const size_t size, const unsigned char seed[randombytes_SEEDBYTES]) { static const unsigned char nonce[crypto_stream_xchacha20_NONCEBYTES] = { 'L', 'i', 'b', 's', 'o', 'd', 'i', 'u', 'm', 'D', 'R', 'G'}; COMPILER_ASSERT(randombytes_SEEDBYTES == crypto_stream_xchacha20_KEYBYTES); #if SIZE_MAX > 0x4000000000ULL COMPILER_ASSERT(randombytes_BYTES_MAX <= 0x4000000000ULL); if(size > 0x4000000000ULL) { sodium_misuse(); } #endif crypto_stream_xchacha20((unsigned char *)buf, (unsigned long long)size, nonce, seed); } size_t randombytes_seedbytes(void) { return randombytes_SEEDBYTES; } int randombytes_close(void) { if(implementation != NULL && implementation->close != NULL) { return implementation->close(); } return 0; } void randombytes(unsigned char *const buf, const unsigned long long buf_len) { assert(buf_len <= SIZE_MAX); randombytes_buf(buf, (size_t)buf_len); }