#ifndef EV_WIN32_HPP #define EV_WIN32_HPP #include #include #include #include #include #include "ev.hpp" #include "logger.hpp" #ifdef sizeof #undef sizeof #endif namespace llarp { int tcp_conn::read(void* buf, size_t sz) { if(_shouldClose) return -1; ssize_t amount = uread(fd.socket, (char*)buf, sz); if(amount > 0) { if(tcp.read) tcp.read(&tcp, buf, amount); } else { // error _shouldClose = true; return -1; } return 0; } void tcp_conn::flush_write() { connected(); ev_io::flush_write(); } ssize_t tcp_conn::do_write(void* buf, size_t sz) { if(_shouldClose) return -1; return uwrite(fd.socket, (char*)buf, sz); } void tcp_conn::connect() { socklen_t slen = sizeof(sockaddr_in); if(_addr.ss_family == AF_UNIX) slen = 115; else if(_addr.ss_family == AF_INET6) slen = sizeof(sockaddr_in6); int result = ::connect(fd.socket, (const sockaddr*)&_addr, slen); if(result == 0) { llarp::LogDebug("connected immedidately"); connected(); } else if(errno == EINPROGRESS) { // in progress llarp::LogDebug("connect in progress"); errno = 0; return; } else if(_conn->error) { // wtf? llarp::LogError("error connecting ", strerror(errno)); _conn->error(_conn); } } int tcp_serv::read(void*, size_t) { int new_fd = ::accept(fd.socket, nullptr, nullptr); if(new_fd == -1) { llarp::LogError("failed to accept on ", fd.socket, ":", strerror(errno)); return -1; } // build handler llarp::tcp_conn* connimpl = new tcp_conn(loop, new_fd); if(loop->add_ev(connimpl, true)) { // call callback if(tcp->accepted) tcp->accepted(tcp, &connimpl->tcp); return 0; } // cleanup error delete connimpl; return -1; } struct udp_listener : public ev_io { llarp_udp_io* udp; udp_listener(int fd, llarp_udp_io* u) : ev_io(fd), udp(u){}; ~udp_listener() { } bool tick() { if(udp->tick) udp->tick(udp); return true; } int read(void* buf, size_t sz) { sockaddr_in6 src; socklen_t slen = sizeof(sockaddr_in6); sockaddr* addr = (sockaddr*)&src; ssize_t ret = ::recvfrom(fd.socket, (char*)buf, sz, 0, addr, &slen); if(ret < 0) return -1; if(static_cast< size_t >(ret) > sz) return -1; udp->recvfrom(udp, addr, buf, ret); return 0; } int sendto(const sockaddr* to, const void* data, size_t sz) { socklen_t slen; switch(to->sa_family) { case AF_INET: slen = sizeof(struct sockaddr_in); break; case AF_INET6: slen = sizeof(struct sockaddr_in6); break; default: return -1; } ssize_t sent = ::sendto(fd.socket, (char*)data, sz, 0, to, slen); if(sent == -1) { llarp::LogWarn(strerror(errno)); } return sent; } }; struct tun : public ev_io { llarp_tun_io* t; device* tunif; tun(llarp_tun_io* tio, llarp_ev_loop* l) : ev_io(INVALID_HANDLE_VALUE, new LossyWriteQueue_t("win32_tun_write_queue", l, l)) , t(tio) , tunif(tuntap_init()) { this->is_tun = true; }; int sendto(const sockaddr* to, const void* data, size_t sz) { (void)(to); (void)(data); (void)(sz); return -1; } void flush_write() { if(t->before_write) { t->before_write(t); } ev_io::flush_write(); } bool tick() { if(t->tick) t->tick(t); flush_write(); return true; } ssize_t do_write(void* data, size_t sz) { return tuntap_write(tunif, data, sz); } int read(void* buf, size_t sz) { ssize_t ret = tuntap_read(tunif, buf, sz); if(ret > 0 && t->recvpkt) // should have pktinfo // I have no idea... t->recvpkt(t, (byte_t*)buf, ret); return ret; } bool setup() { if(tuntap_start(tunif, TUNTAP_MODE_TUNNEL, 0) == -1) { llarp::LogWarn("failed to start interface"); return false; } if(tuntap_set_ip(tunif, t->ifaddr, t->ifaddr, t->netmask) == -1) { llarp::LogWarn("failed to set ip"); return false; } if(tuntap_up(tunif) == -1) { llarp::LogWarn("failed to put interface up: ", strerror(errno)); return false; } fd.tun = tunif->tun_fd; if(fd.tun == INVALID_HANDLE_VALUE) return false; // we're already non-blocking return true; } ~tun() { } }; }; // namespace llarp struct llarp_win32_loop : public llarp_ev_loop { upoll_t* upollfd; llarp_win32_loop() : upollfd(nullptr) { } bool tcp_connect(struct llarp_tcp_connecter* tcp, const sockaddr* remoteaddr) { // create socket int fd = usocket(remoteaddr->sa_family, SOCK_STREAM, 0); if(fd == -1) return false; llarp::tcp_conn* conn = new llarp::tcp_conn(this, fd, remoteaddr, tcp); add_ev(conn, true); conn->connect(); return true; } llarp::ev_io* bind_tcp(llarp_tcp_acceptor* tcp, const sockaddr* bindaddr) { int fd = usocket(bindaddr->sa_family, SOCK_STREAM, 0); if(fd == -1) return nullptr; socklen_t sz = sizeof(sockaddr_in); if(bindaddr->sa_family == AF_INET6) { sz = sizeof(sockaddr_in6); } // keep. inexplicably, windows now has unix domain sockets // for now, use the ID numbers directly until this comes out of // beta else if(bindaddr->sa_family == AF_UNIX) { sz = 110; // current size in 10.0.17763, verify each time the beta PSDK // is updated } if(::bind(fd, bindaddr, sz) == -1) { uclose(fd); return nullptr; } if(ulisten(fd, 5) == -1) { uclose(fd); return nullptr; } return new llarp::tcp_serv(this, fd, tcp); } virtual bool udp_listen(llarp_udp_io* l, const sockaddr* src) { auto ev = create_udp(l, src); if(ev) l->fd = ev->fd.socket; return ev && add_ev(ev, false); } ~llarp_win32_loop() { if(upollfd) upoll_destroy(upollfd); } bool running() const { return upollfd != nullptr; } bool init() { if(!upollfd) upollfd = upoll_create(1); return false; } int tick(int ms) { upoll_event_t events[1024]; int result; result = upoll_wait(upollfd, events, 1024, ms); if(result > 0) { int idx = 0; while(idx < result) { llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].data.ptr); if(ev) { if(events[idx].events & UPOLLERR) { ev->error(); } else { if(events[idx].events & UPOLLIN) { ev->read(readbuf, sizeof(readbuf)); } if(events[idx].events & UPOLLOUT) { ev->flush_write(); } } } ++idx; } } if(result != -1) tick_listeners(); return result; } int run() { upoll_event_t events[1024]; int result; do { result = upoll_wait(upollfd, events, 1024, EV_TICK_INTERVAL); if(result > 0) { int idx = 0; while(idx < result) { llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].data.ptr); if(ev) { if(events[idx].events & UPOLLERR) { ev->error(); } else { if(events[idx].events & UPOLLIN) { ev->read(readbuf, sizeof(readbuf)); } if(events[idx].events & UPOLLOUT) { ev->flush_write(); } } } ++idx; } } if(result != -1) tick_listeners(); } while(upollfd); return result; } int udp_bind(const sockaddr* addr) { socklen_t slen; switch(addr->sa_family) { case AF_INET: slen = sizeof(struct sockaddr_in); break; case AF_INET6: slen = sizeof(struct sockaddr_in6); break; default: return -1; } int fd = usocket(addr->sa_family, SOCK_DGRAM, 0); if(fd == -1) { perror("usocket()"); return -1; } if(addr->sa_family == AF_INET6) { // enable dual stack explicitly int dual = 1; if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (char*)&dual, sizeof(dual)) == -1) { // failed perror("setsockopt()"); close(fd); return -1; } } llarp::Addr a(*addr); llarp::LogDebug("bind to ", a); if(bind(fd, addr, slen) == -1) { perror("bind()"); close(fd); return -1; } return fd; } bool close_ev(llarp::ev_io* ev) { return upoll_ctl(upollfd, UPOLL_CTL_DEL, ev->fd.socket, nullptr) != -1; } llarp::ev_io* create_tun(llarp_tun_io* tun) { llarp::tun* t = new llarp::tun(tun, this); if(t->setup()) { return t; } delete t; return nullptr; } llarp::ev_io* create_udp(llarp_udp_io* l, const sockaddr* src) { int fd = udp_bind(src); if(fd == -1) return nullptr; llarp::ev_io* listener = new llarp::udp_listener(fd, l); l->impl = listener; return listener; } bool add_ev(llarp::ev_io* e, bool write) { upoll_event_t ev; ev.data.ptr = e; ev.events = UPOLLIN | UPOLLERR; if(write) ev.events |= UPOLLOUT; if(upoll_ctl(upollfd, UPOLL_CTL_ADD, e->fd.socket, &ev) == -1) { delete e; return false; } handlers.emplace_back(e); return true; } bool udp_close(llarp_udp_io* l) { bool ret = false; llarp::udp_listener* listener = static_cast< llarp::udp_listener* >(l->impl); if(listener) { close_ev(listener); // remove handler auto itr = handlers.begin(); while(itr != handlers.end()) { if(itr->get() == listener) itr = handlers.erase(itr); else ++itr; } l->impl = nullptr; ret = true; } return ret; } void stop() { if(upollfd) upoll_destroy(upollfd); upollfd = nullptr; } }; #endif