* initial work for RC SRVs.
Needs tests for new RC format.
Needs SRVs added to new RC, and associated tests.
* convert rc sign/verify test to catch2, add test for new rc
Also fixes a mistake in new rc serialization
* bump loki-mq submodule
need support for viewing bt deserialize consumer buffer so we
know how much it has consumed.
* fix some behavior errors
need to advance llarp_buffer_t after consuming data from it
only rewind and modify size of llarp_buffer_t in owning context.
* Add test for router contact (de-)serialization
Adds a test that makes a list of RouterContact with mixed
versions and ensures it serializes and deserializes correctly.
* initial relay side lns
* fix typo
* add reserved names and refactor test for dns
* lns name decryption
* all wired up (allegedly)
* refact to use service::EncryptedName for LNS responses to include nonce with ciphertext
* fully rwemove tag_lookup_job
* replace lns cache with DecayingHashTable
* check for lns name validity against the following rules:
* not localhost.loki, loki.loki, or snode.loki
* if it contains no dash then max 32 characters long, not including the .loki tld (and also assuming a leading subdomain has been stripped)
* These are from general DNS requirements, and also enforced in
registrations:
* Must be all [A-Za-z0-9-]. (A-Z will be lower-cased by the RPC call).
* cannot start or end with a -
* max 63 characters long if it does contain a dash
* cannot contain -- in the third and fourth characters unless it starts with xn--
* handle timeout in name lookup job by calling the right handler with std::nullopt
Refactors many things in cmake to improve and simplify:
- don't use variable indirection for target names; target names are
*already* a variable of sorts. (e.g. ${UTIL_LIB} is now just
lokinet-util). cmake/basic_definitions.cmake is now gone.
- fix LTO enabling to use the standard cmake (3.9+) LTO mechanism rather
than shoving a bunch of flag hacks through link_libraries and
add_compile_options. This also now enables LTO when building a shared
library (because previously the -flto hacks were only turned on in the
static code for some reason).
- build liblokinet as *either* shared library or static library, but not
both. Building both makes things more complicated because they had
different names (lokinet-shared or lokinet-static) and seems pointless:
you generally want one or the other. Now there is just the liblokinet
target, which will be shared or static depending on the value of
BUILD_SHARED_LIBS.
- Simplify lokinet-cryptography AVX2 code: just build *one* library, and
add in the additional AVX2 files when possible, rather than building two
and needing to merge them.
- Compress STATIC_LINK and STATIC_LINK_RUNTIME into just STATIC_LINK.
It makes no sense to use one of these (_RUNTIME) on Windows and the
other on non-Windows when they appear to try to do the same thing.
- remove a bunch of annotations from `endif(FOO)` -> `endif()`.
- move all the tuntap compilation code (including OS-specific source
file selection) into vendor/CMakeLists.txt and build tuntap as an
intermediate OBJECT library rather than keeping a global variable in 5
different files.
- move release motto define to root cmake; it made no sense being
duplicated in both unix.cmake and win32.cmake
- fix add_log_tag to not stomp on any existing source compile flags with
its definition. Also use proper compile definition property instead of
cramming it into compile flags.
- make optimization/linker flags less hacky. There's no reason for us
to force particular optimization flags because the cmake build type
already does that (e.g. -DCMAKE_BUILD_TYPE=Release does -O3). Not doing
that also silences a bunch of cmake warnings because it thinks "-O0 -g3"
etc. are link libraries (which is reasonable: that's what the code was
telling cmake they are).
- sets the default build type to RelWithDebInfo which gives us `-O2 -g`
if you don't specify a build type.
- Move PIC up (so that the things loaded in unix.cmake, notably libuv,
have it set).
- Add a custom `curl` interface library that carries the correct link
target and include paths for curl (system or bundled).
Renames the cmake Catch2 test target to "catch" (instead of "check") and
adds a "rungtest" for gtest (because the "gtest" target is already taken
by the gtest library itself), and then repurposes the "check" target to
run both test suite binaries.
Also updates the top-level Makefile to do the same thing, except that
there the gtest target is just "gtest" instead of "rungtest".
Adds a TrimWhiteSpace instead of using abseil's.
Adds Catch2 tests for it, and also converts the existing str tests to
catch (which look much, much nicer than the gtest ones).
- util::Mutex is now a std::shared_timed_mutex, which is capable of
exclusive and shared locks.
- util::Lock is still present as a std::lock_guard<util::Mutex>.
- the locking annotations are preserved, but updated to the latest
supported by clang rather than using abseil's older/deprecated ones.
- ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into
locks anymore (WTF abseil).
- ReleasableLock is gone. Instead there are now some llarp::util helper
methods to obtain unique and/or shared locks:
- `auto lock = util::unique_lock(mutex);` gets an RAII-but-also
unlockable object (std::unique_lock<T>, with T inferred from
`mutex`).
- `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e.
"reader") lock of the mutex.
- `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be
used to atomically lock multiple mutexes at once (returning a
tuple of the locks).
This are templated on the mutex which makes them a bit more flexible
than using a concrete type: they can be used for any type of lockable
mutex, not only util::Mutex. (Some of the code here uses them for
getting locks around a std::mutex). Until C++17, using the RAII types
is painfully verbose:
```C++
// pre-C++17 - needing to figure out the mutex type here is annoying:
std::unique_lock<util::Mutex> lock(mutex);
// pre-C++17 and even more verbose (but at least the type isn't needed):
std::unique_lock<decltype(mutex)> lock(mutex);
// our compromise:
auto lock = util::unique_lock(mutex);
// C++17:
std::unique_lock lock(mutex);
```
All of these functions will also warn (under gcc or clang) if you
discard the return value. You can also do fancy things like
`auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a
lock take over an already-locked mutex).
- metrics code is gone, which also removes a big pile of code that was
only used by metrics:
- llarp::util::Scheduler
- llarp:🧵:TimerQueue
- llarp::util::Stopwatch