This replaces all use of std::optional's `opt.value()` with `*opt`
because macOS is great and the ghost of Steve Jobs says that actually
supporting std::optional's value() method is not for chumps before macOS
10.14. So don't use it because Apple is great.
Pretty much all of our use of it actually is done better with operator*
anyway (since operator* doesn't do a check that the optional has a
value).
Also replaced *most* of the `has_value()` calls with direct bool
context, except for one in the config section which looked really
confusing at a glance without a has_value().
This commit reflects changes to clang-format rules. Unfortunately,
these rule changes create a massive change to the codebase, which
causes an apparent rewrite of git history.
Git blame's --ignore-rev flag can be used to ignore this commit when
attempting to `git blame` some code.
This template-ifies Router::NotifyRouterEvent() up so that it accepts
the arguments to instantiate the specified event type, forwarding them
to std::make_unique. This would allow (in the future) the function to
no-op the call and avoid memory allocation. It also slightly reduces
the amount of code required to fire an event.
This commit also simplifies some of the RouterEvent code to reduce
redundancy.
These aren't needed: CMake already knows how to follow #includes and
rebuild when headers change as long as the headers are included
*somewhere*. The extra .cpp files here just require building a bunch of
.cpp files with just header content that we just end up throw away
during linking (since the same things will also be compiled in whatever
other compilation units include the same headers).
- util::Mutex is now a std::shared_timed_mutex, which is capable of
exclusive and shared locks.
- util::Lock is still present as a std::lock_guard<util::Mutex>.
- the locking annotations are preserved, but updated to the latest
supported by clang rather than using abseil's older/deprecated ones.
- ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into
locks anymore (WTF abseil).
- ReleasableLock is gone. Instead there are now some llarp::util helper
methods to obtain unique and/or shared locks:
- `auto lock = util::unique_lock(mutex);` gets an RAII-but-also
unlockable object (std::unique_lock<T>, with T inferred from
`mutex`).
- `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e.
"reader") lock of the mutex.
- `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be
used to atomically lock multiple mutexes at once (returning a
tuple of the locks).
This are templated on the mutex which makes them a bit more flexible
than using a concrete type: they can be used for any type of lockable
mutex, not only util::Mutex. (Some of the code here uses them for
getting locks around a std::mutex). Until C++17, using the RAII types
is painfully verbose:
```C++
// pre-C++17 - needing to figure out the mutex type here is annoying:
std::unique_lock<util::Mutex> lock(mutex);
// pre-C++17 and even more verbose (but at least the type isn't needed):
std::unique_lock<decltype(mutex)> lock(mutex);
// our compromise:
auto lock = util::unique_lock(mutex);
// C++17:
std::unique_lock lock(mutex);
```
All of these functions will also warn (under gcc or clang) if you
discard the return value. You can also do fancy things like
`auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a
lock take over an already-locked mutex).
- metrics code is gone, which also removes a big pile of code that was
only used by metrics:
- llarp::util::Scheduler
- llarp:🧵:TimerQueue
- llarp::util::Stopwatch
Step 1 of removing abseil from lokinet.
For the most part this is a drop-in replacement, but there are also a
few changes here to the JSONRPC layer that were needed to work around
current gcc 10 dev snapshot:
- JSONRPC returns a json now instead of an optional<json>. It doesn't
make any sense to have a json rpc call that just closes the connection
with returning anything. Invoked functions can return a null (default
constructed) result now if they don't have anything to return (such a
null value won't be added as "result").
Success case:
- the path endpoint creates and sends a LR_StatusMessage upon
successful path creation
Failure case:
- an intermediate hop creates and sends a LR_StatusMessage upon
failure to forward the path to the next hop for any reason
Both cases:
- transit hops receive LR_StatusMessages and add a frame
to them reflecting their "status" with respect to that path
- the path creator receives LR_StatusMessages and decrypts/parses
the LR_StatusRecord frames from the path hops. If all is good,
the Path does as it would when receiving a PathConfirmMessage.
If not, the Path marks the new path as failed.
LR_StatusMessage is now used/sent in place of PathConfirmMessage