This is an initial pass at doing explicit value checks when handling
config parsing, as opposed to using a visiting pattern. The latter
made it difficult to check for conditions such as missing required
values, multiple values, etc.
It was also generally less readable (think declarative) which further
made it difficult to get a grasp for what our actual configuration file
requirements were.
This commit reflects changes to clang-format rules. Unfortunately,
these rule changes create a massive change to the codebase, which
causes an apparent rewrite of git history.
Git blame's --ignore-rev flag can be used to ignore this commit when
attempting to `git blame` some code.
This template-ifies Router::NotifyRouterEvent() up so that it accepts
the arguments to instantiate the specified event type, forwarding them
to std::make_unique. This would allow (in the future) the function to
no-op the call and avoid memory allocation. It also slightly reduces
the amount of code required to fire an event.
This commit also simplifies some of the RouterEvent code to reduce
redundancy.
DHT PubIntroSentEvent
some helper functions added to RouterHive (C++ class) as well as RouterHive(Python class)
hive.py main() continues to be a testbed for new event types
some more internal classes in pybind
This caused some unwanted behaviour:
- on initial startup we often get two publishes in quick succession
because we're publishing and building paths at the same time
- at the 10m mark we enter a publish loop every 5 seconds because we
have paths with lifetimes < 10min that was triggering this condition,
and yet those paths will never actually be included in the introset
because they are expiring in <10m.
This should ensure that we have enough shortly after startup for initial
path builds.
The spread speed here gets slightly increased to lifetime/5 (=4min)
instead of lifetime/4 (=5min) so that our "normal" number of paths is 5
with occassional momentary drops to 4, but should always keep us >= the
new minimum of 4.
Because the path spread happens over time, this shouldn't result in a
rebuild of several paths: we'll build 4 quickly, then another at +4m,
another at +8m, etc. When the initial 4 expire, we'll be dropping from
9 to 5 established but that's still above the minimum (4) so we won't
need to reconnect to several at once, and the spread builds should keep
us at 5 all the time.
These aren't needed: CMake already knows how to follow #includes and
rebuild when headers change as long as the headers are included
*somewhere*. The extra .cpp files here just require building a bunch of
.cpp files with just header content that we just end up throw away
during linking (since the same things will also be compiled in whatever
other compilation units include the same headers).
- util::Mutex is now a std::shared_timed_mutex, which is capable of
exclusive and shared locks.
- util::Lock is still present as a std::lock_guard<util::Mutex>.
- the locking annotations are preserved, but updated to the latest
supported by clang rather than using abseil's older/deprecated ones.
- ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into
locks anymore (WTF abseil).
- ReleasableLock is gone. Instead there are now some llarp::util helper
methods to obtain unique and/or shared locks:
- `auto lock = util::unique_lock(mutex);` gets an RAII-but-also
unlockable object (std::unique_lock<T>, with T inferred from
`mutex`).
- `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e.
"reader") lock of the mutex.
- `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be
used to atomically lock multiple mutexes at once (returning a
tuple of the locks).
This are templated on the mutex which makes them a bit more flexible
than using a concrete type: they can be used for any type of lockable
mutex, not only util::Mutex. (Some of the code here uses them for
getting locks around a std::mutex). Until C++17, using the RAII types
is painfully verbose:
```C++
// pre-C++17 - needing to figure out the mutex type here is annoying:
std::unique_lock<util::Mutex> lock(mutex);
// pre-C++17 and even more verbose (but at least the type isn't needed):
std::unique_lock<decltype(mutex)> lock(mutex);
// our compromise:
auto lock = util::unique_lock(mutex);
// C++17:
std::unique_lock lock(mutex);
```
All of these functions will also warn (under gcc or clang) if you
discard the return value. You can also do fancy things like
`auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a
lock take over an already-locked mutex).
- metrics code is gone, which also removes a big pile of code that was
only used by metrics:
- llarp::util::Scheduler
- llarp:🧵:TimerQueue
- llarp::util::Stopwatch