* route poking:
* remove popen() call, replace with reading /proc/net/route for getting default route
* dynamically poke and unpoke routes on runtime
* swap intros and fix rpc endpoint for version to return what the ui expects
* use std::string::find_first_not_of instead of using a lambda
This replaces all use of std::optional's `opt.value()` with `*opt`
because macOS is great and the ghost of Steve Jobs says that actually
supporting std::optional's value() method is not for chumps before macOS
10.14. So don't use it because Apple is great.
Pretty much all of our use of it actually is done better with operator*
anyway (since operator* doesn't do a check that the optional has a
value).
Also replaced *most* of the `has_value()` calls with direct bool
context, except for one in the config section which looked really
confusing at a glance without a has_value().
This commit reflects changes to clang-format rules. Unfortunately,
these rule changes create a massive change to the codebase, which
causes an apparent rewrite of git history.
Git blame's --ignore-rev flag can be used to ignore this commit when
attempting to `git blame` some code.
These aren't needed: CMake already knows how to follow #includes and
rebuild when headers change as long as the headers are included
*somewhere*. The extra .cpp files here just require building a bunch of
.cpp files with just header content that we just end up throw away
during linking (since the same things will also be compiled in whatever
other compilation units include the same headers).
- util::Mutex is now a std::shared_timed_mutex, which is capable of
exclusive and shared locks.
- util::Lock is still present as a std::lock_guard<util::Mutex>.
- the locking annotations are preserved, but updated to the latest
supported by clang rather than using abseil's older/deprecated ones.
- ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into
locks anymore (WTF abseil).
- ReleasableLock is gone. Instead there are now some llarp::util helper
methods to obtain unique and/or shared locks:
- `auto lock = util::unique_lock(mutex);` gets an RAII-but-also
unlockable object (std::unique_lock<T>, with T inferred from
`mutex`).
- `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e.
"reader") lock of the mutex.
- `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be
used to atomically lock multiple mutexes at once (returning a
tuple of the locks).
This are templated on the mutex which makes them a bit more flexible
than using a concrete type: they can be used for any type of lockable
mutex, not only util::Mutex. (Some of the code here uses them for
getting locks around a std::mutex). Until C++17, using the RAII types
is painfully verbose:
```C++
// pre-C++17 - needing to figure out the mutex type here is annoying:
std::unique_lock<util::Mutex> lock(mutex);
// pre-C++17 and even more verbose (but at least the type isn't needed):
std::unique_lock<decltype(mutex)> lock(mutex);
// our compromise:
auto lock = util::unique_lock(mutex);
// C++17:
std::unique_lock lock(mutex);
```
All of these functions will also warn (under gcc or clang) if you
discard the return value. You can also do fancy things like
`auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a
lock take over an already-locked mutex).
- metrics code is gone, which also removes a big pile of code that was
only used by metrics:
- llarp::util::Scheduler
- llarp:🧵:TimerQueue
- llarp::util::Stopwatch