Merge remote-tracking branch 'origin/master'

pull/469/head
Jeff Becker 5 years ago
commit ae786feab6
No known key found for this signature in database
GPG Key ID: F357B3B42F6F9B05

@ -1 +1,2 @@
build/
.vscode/

@ -44,9 +44,10 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "SunOS")
INCLUDE(CheckIncludeFiles)
CHECK_INCLUDE_FILES(sys/epoll.h SOLARIS_HAVE_EPOLL)
if (SOLARIS_HAVE_EPOLL AND NOT USE_POLL)
add_definitions(-DSOLARIS_HAVE_EPOLL)
message(STATUS "Using fast emulation of Linux epoll(5) on Solaris.")
add_definitions(-DSOLARIS_HAVE_EPOLL)
else()
set(SOLARIS_HAVE_EPOLL OFF)
message(STATUS "Falling back to poll(2)-based event loop.")
endif()
endif()
@ -311,7 +312,7 @@ if(UNIX)
if (SOLARIS_HAVE_EPOLL)
get_filename_component(EV_SRC "llarp/ev/ev_epoll.cpp" ABSOLUTE)
else()
get_filename_component(EV_SRC "llarp/ev/ev_poll.cpp" ABSOLUTE)
get_filename_component(EV_SRC "llarp/ev/ev_sun.cpp" ABSOLUTE)
endif()
else()
message(FATAL_ERROR "Your operating system is not supported yet")

@ -71,8 +71,7 @@ void
PackedSockAddr::set(const SOCKADDR_STORAGE *sa, socklen_t len)
{
// on unix, the cast does nothing, socklen_t is _already_ unsigned
sockaddr_storage ssa = *sa; // stops member access with misaligned address
if( ssa.ss_family == AF_INET)
if(sa->ss_family == AF_INET)
{
assert((unsigned)len >= sizeof(sockaddr_in));
const sockaddr_in *sin = (sockaddr_in *)sa;

@ -78,6 +78,13 @@ win32/win32_upoll.c
)
endif(WIN32)
if (SOLARIS)
set(LIB_PLATFORM_SRC
${LIB_PLATFORM_SRC}
ev/upoll_sun.c
)
endif(SOLARIS)
add_library(${PLATFORM_LIB} STATIC ${LIB_PLATFORM_SRC})
target_link_libraries(${PLATFORM_LIB} PUBLIC ${CRYPTOGRAPHY_LIB} ${UTIL_LIB} libutp Threads::Threads)
@ -159,13 +166,13 @@ set(LIB_SRC
handlers/exit.cpp
handlers/null.cpp
handlers/tun.cpp
link/encoder.cpp
link/iwp.cpp
iwp/linklayer.cpp
iwp/outermessage.cpp
iwp/iwp.cpp
link/server.cpp
link/session.cpp
link/utp.cpp
messages/dht.cpp
messages/dht_immediate.cpp
messages/dht.cpp
messages/discard.cpp
messages/exit.cpp
messages/link_intro.cpp
@ -214,6 +221,10 @@ set(LIB_SRC
service/tag.cpp
service/types.cpp
service/vanity.cpp
utp/inbound_message.cpp
utp/linklayer.cpp
utp/session.cpp
utp/utp.cpp
)
if(TESTNET)
set(LIB_SRC ${LIB_SRC} testnet.c)

@ -14,6 +14,8 @@
#elif defined(_WIN32) || defined(_WIN64) || defined(__NT__)
#define SHUT_RDWR SD_BOTH
#include <ev/ev_win32.hpp>
#elif defined(__sun) && !defined(SOLARIS_HAVE_EPOLL)
#include <ev/ev_sun.hpp>
#else
#error No async event loop for your platform, subclass llarp_ev_loop
#endif
@ -22,13 +24,15 @@
void
llarp_ev_loop_alloc(struct llarp_ev_loop **ev)
{
#if __linux__ || __sun__
#if __linux__ || SOLARIS_HAVE_EPOLL
*ev = new llarp_epoll_loop;
#elif defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) \
|| (__APPLE__ && __MACH__)
*ev = new llarp_kqueue_loop;
#elif defined(_WIN32) || defined(_WIN64) || defined(__NT__)
*ev = new llarp_win32_loop;
#elif defined(__sun) && !defined(SOLARIS_HAVE_EPOLL)
*ev = new llarp_poll_loop;
#else
// TODO: fall back to a generic select-based event loop
#error no event loop subclass
@ -40,15 +44,16 @@ llarp_ev_loop_alloc(struct llarp_ev_loop **ev)
std::unique_ptr< llarp_ev_loop >
llarp_make_ev_loop()
{
#if __linux__ || __sun__
#if __linux__ || SOLARIS_HAVE_EPOLL
std::unique_ptr< llarp_ev_loop > r = std::make_unique< llarp_epoll_loop >();
#elif defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) \
|| (__APPLE__ && __MACH__)
std::unique_ptr< llarp_ev_loop > r = std::make_unique< llarp_kqueue_loop >();
#elif defined(_WIN32) || defined(_WIN64) || defined(__NT__)
std::unique_ptr< llarp_ev_loop > r = std::make_unique< llarp_win32_loop >();
#elif defined(__sun) && !defined(SOLARIS_HAVE_EPOLL)
std::unique_ptr< llarp_ev_loop > r = std::make_unique< llarp_poll_loop >();
#else
// TODO: fall back to a generic select-based event loop
#error no event loop subclass
#endif
r->init();

@ -55,7 +55,11 @@ static ssize_t
IO(std::function< ssize_t(void) > iofunc)
{
ssize_t ret = iofunc();
errno = 0;
#ifndef _WIN32
errno = 0;
#else
WSASetLastError(0);
#endif
return ret;
}

@ -0,0 +1,526 @@
#include <ev/ev_sun.hpp>
namespace llarp
{
int
tcp_conn::read(byte_t* buf, size_t sz)
{
if(_shouldClose)
return -1;
ssize_t amount = ::read(fd, buf, sz);
if(amount > 0)
{
if(tcp.read)
tcp.read(&tcp, llarp_buffer_t(buf, amount));
}
else if(amount < 0)
{
// error
_shouldClose = true;
errno = 0;
return -1;
}
return 0;
}
void
tcp_conn::flush_write()
{
connected();
ev_io::flush_write();
}
ssize_t
tcp_conn::do_write(void* buf, size_t sz)
{
if(_shouldClose)
return -1;
// pretty much every UNIX system still extant, _including_ solaris
// (on both sides of the fork) can ignore SIGPIPE....except
// the other vendored systems... -rick
return ::send(fd, buf, sz, MSG_NOSIGNAL); // ignore sigpipe
}
void
tcp_conn::connect()
{
socklen_t slen = sizeof(sockaddr_in);
if(_addr.ss_family == AF_UNIX)
slen = sizeof(sockaddr_un);
else if(_addr.ss_family == AF_INET6)
slen = sizeof(sockaddr_in6);
int result = ::connect(fd, (const sockaddr*)&_addr, slen);
if(result == 0)
{
llarp::LogDebug("connected immedidately");
connected();
}
else if(errno == EINPROGRESS)
{
// in progress
llarp::LogDebug("connect in progress");
errno = 0;
return;
}
else if(_conn->error)
{
// wtf?
llarp::LogError("error connecting ", strerror(errno));
_conn->error(_conn);
errno = 0;
}
}
int
tcp_serv::read(byte_t*, size_t)
{
int new_fd = ::accept(fd, nullptr, nullptr);
if(new_fd == -1)
{
llarp::LogError("failed to accept on ", fd, ":", strerror(errno));
return -1;
}
// build handler
llarp::tcp_conn* connimpl = new tcp_conn(loop, new_fd);
if(loop->add_ev(connimpl, true))
{
// call callback
if(tcp->accepted)
tcp->accepted(tcp, &connimpl->tcp);
return 0;
}
// cleanup error
delete connimpl;
return -1;
}
bool
udp_listener::tick()
{
if(udp->tick)
udp->tick(udp);
return true;
}
int
udp_listener::read(byte_t* buf, size_t sz)
{
llarp_buffer_t b;
b.base = buf;
b.cur = b.base;
sockaddr_in6 src;
socklen_t slen = sizeof(sockaddr_in6);
sockaddr* addr = (sockaddr*)&src;
ssize_t ret = ::recvfrom(fd, b.base, sz, 0, addr, &slen);
if(ret < 0)
{
errno = 0;
return -1;
}
if(static_cast< size_t >(ret) > sz)
return -1;
b.sz = ret;
udp->recvfrom(udp, addr, ManagedBuffer{b});
return ret;
}
int
udp_listener::sendto(const sockaddr* to, const void* data, size_t sz)
{
socklen_t slen;
switch(to->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
default:
return -1;
}
ssize_t sent = ::sendto(fd, data, sz, SOCK_NONBLOCK, to, slen);
if(sent == -1)
{
llarp::LogWarn(strerror(errno));
}
return sent;
}
int
tun::sendto(__attribute__((unused)) const sockaddr* to,
__attribute__((unused)) const void* data,
__attribute__((unused)) size_t sz)
{
return -1;
}
bool
tun::tick()
{
if(t->tick)
t->tick(t);
flush_write();
return true;
}
void
tun::flush_write()
{
if(t->before_write)
t->before_write(t);
ev_io::flush_write();
}
int
tun::read(byte_t* buf, size_t sz)
{
ssize_t ret = tuntap_read(tunif, buf, sz);
if(ret > 0 && t->recvpkt)
{
// does not have pktinfo
t->recvpkt(t, llarp_buffer_t(buf, ret));
}
return ret;
}
bool
tun::setup()
{
llarp::LogDebug("set ifname to ", t->ifname);
strncpy(tunif->if_name, t->ifname, sizeof(tunif->if_name));
if(tuntap_start(tunif, TUNTAP_MODE_TUNNEL, 0) == -1)
{
llarp::LogWarn("failed to start interface");
return false;
}
if(tuntap_up(tunif) == -1)
{
llarp::LogWarn("failed to put interface up: ", strerror(errno));
return false;
}
if(tuntap_set_ip(tunif, t->ifaddr, t->ifaddr, t->netmask) == -1)
{
llarp::LogWarn("failed to set ip");
return false;
}
fd = tunif->tun_fd;
if(fd == -1)
return false;
// set non blocking
int flags = fcntl(fd, F_GETFL, 0);
if(flags == -1)
return false;
return fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1;
}
}; // namespace llarp
bool
llarp_poll_loop::tcp_connect(struct llarp_tcp_connecter* tcp,
const sockaddr* remoteaddr)
{
// create socket
int fd = ::socket(remoteaddr->sa_family, SOCK_STREAM, 0);
if(fd == -1)
return false;
// set non blocking
int flags = fcntl(fd, F_GETFL, 0);
if(flags == -1)
{
::close(fd);
return false;
}
if(fcntl(fd, F_SETFL, flags | O_NONBLOCK) == -1)
{
::close(fd);
return false;
}
llarp::tcp_conn* conn = new llarp::tcp_conn(this, fd, remoteaddr, tcp);
add_ev(conn, true);
conn->connect();
return true;
}
llarp::ev_io*
llarp_poll_loop::bind_tcp(llarp_tcp_acceptor* tcp, const sockaddr* bindaddr)
{
int fd = ::socket(bindaddr->sa_family, SOCK_STREAM, 0);
if(fd == -1)
return nullptr;
socklen_t sz = sizeof(sockaddr_in);
if(bindaddr->sa_family == AF_INET6)
{
sz = sizeof(sockaddr_in6);
}
else if(bindaddr->sa_family == AF_UNIX)
{
sz = sizeof(sockaddr_un);
}
if(::bind(fd, bindaddr, sz) == -1)
{
::close(fd);
return nullptr;
}
if(::listen(fd, 5) == -1)
{
::close(fd);
return nullptr;
}
return new llarp::tcp_serv(this, fd, tcp);
}
bool
llarp_poll_loop::udp_listen(llarp_udp_io* l, const sockaddr* src)
{
auto ev = create_udp(l, src);
if(ev)
l->fd = ev->fd;
return ev && add_ev(ev, false);
}
bool
llarp_poll_loop::running() const
{
return upollfd != nullptr;
}
bool
llarp_poll_loop::init()
{
if(!upollfd)
upollfd = upoll_create(1); // why do we return false? (see ev_epoll.cpp)
return false;
}
int
llarp_poll_loop::tick(int ms)
{
upoll_event_t events[1024];
int result;
result = upoll_wait(upollfd, events, 1024, ms);
bool didIO = false;
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].data.ptr);
if(ev)
{
llarp::LogDebug(idx, " of ", result, " on ", ev->fd,
" events=", std::to_string(events[idx].events));
if(events[idx].events & UPOLLERR && errno)
{
IO([&]() -> ssize_t {
llarp::LogDebug("upoll error");
ev->error();
return 0;
});
}
else
{
// write THEN READ don't revert me
if(events[idx].events & UPOLLOUT)
{
IO([&]() -> ssize_t {
llarp::LogDebug("upoll out");
ev->flush_write();
return 0;
});
}
if(events[idx].events & UPOLLIN)
{
ssize_t amount = IO([&]() -> ssize_t {
llarp::LogDebug("upoll in");
return ev->read(readbuf, sizeof(readbuf));
});
if(amount > 0)
didIO = true;
}
}
}
++idx;
}
}
if(result != -1)
tick_listeners();
/// if we didn't get an io events we sleep to avoid 100% cpu use
if(!didIO)
std::this_thread::sleep_for(std::chrono::milliseconds(5));
return result;
}
int
llarp_poll_loop::run()
{
upoll_event_t events[1024];
int result;
do
{
result = upoll_wait(upollfd, events, 1024, EV_TICK_INTERVAL);
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].data.ptr);
if(ev)
{
if(events[idx].events & UPOLLERR)
{
ev->error();
}
else
{
if(events[idx].events & UPOLLIN)
{
ev->read(readbuf, sizeof(readbuf));
}
if(events[idx].events & UPOLLOUT)
{
ev->flush_write();
}
}
}
++idx;
}
}
if(result != -1)
tick_listeners();
} while(upollfd);
return result;
}
int
llarp_poll_loop::udp_bind(const sockaddr* addr)
{
socklen_t slen;
switch(addr->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
default:
return -1;
}
int fd = socket(addr->sa_family, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("socket()");
return -1;
}
if(addr->sa_family == AF_INET6)
{
// enable dual stack explicitly
int dual = 1;
if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &dual, sizeof(dual)) == -1)
{
// failed
perror("setsockopt()");
close(fd);
return -1;
}
}
llarp::Addr a(*addr);
llarp::LogDebug("bind to ", a);
if(bind(fd, addr, slen) == -1)
{
perror("bind()");
close(fd);
return -1;
}
return fd;
}
bool
llarp_poll_loop::close_ev(llarp::ev_io* ev)
{
return upoll_ctl(upollfd, UPOLL_CTL_DEL, ev->fd, nullptr) != -1;
}
llarp::ev_io*
llarp_poll_loop::create_tun(llarp_tun_io* tun)
{
llarp::tun* t = new llarp::tun(tun, this);
if(t->setup())
{
return t;
}
delete t;
return nullptr;
}
llarp::ev_io*
llarp_poll_loop::create_udp(llarp_udp_io* l, const sockaddr* src)
{
int fd = udp_bind(src);
if(fd == -1)
return nullptr;
llarp::ev_io* listener = new llarp::udp_listener(fd, l);
l->impl = listener;
return listener;
}
bool
llarp_poll_loop::add_ev(llarp::ev_io* e, bool write)
{
upoll_event_t ev;
ev.data.ptr = e;
ev.events = UPOLLIN | UPOLLERR;
if(write)
ev.events |= UPOLLOUT;
if(upoll_ctl(upollfd, UPOLL_CTL_ADD, e->fd, &ev) == -1)
{
delete e;
return false;
}
handlers.emplace_back(e);
return true;
}
bool
llarp_poll_loop::udp_close(llarp_udp_io* l)
{
bool ret = false;
llarp::udp_listener* listener = static_cast< llarp::udp_listener* >(l->impl);
if(listener)
{
close_ev(listener);
// remove handler
auto itr = handlers.begin();
while(itr != handlers.end())
{
if(itr->get() == listener)
itr = handlers.erase(itr);
else
++itr;
}
l->impl = nullptr;
ret = true;
}
return ret;
}
void
llarp_poll_loop::stop()
{
// close all handlers before closing the upoll fd
auto itr = handlers.begin();
while(itr != handlers.end())
{
close_ev(itr->get());
itr = handlers.erase(itr);
}
if(upollfd)
upoll_destroy(upollfd);
upollfd = nullptr;
}

@ -0,0 +1,136 @@
#ifndef EV_POLL_HPP
#define EV_POLL_HPP
#include <ev/ev.hpp>
#include <net/net.h>
#include <net/net.hpp>
#include <util/buffer.hpp>
#include <util/buffer.hpp>
#include <util/logger.hpp>
#include <util/mem.hpp>
#include <cassert>
#include <cstdio>
#include <fcntl.h>
#include <signal.h>
#include "upoll_sun.h"
#include <sys/un.h>
#include <tuntap.h>
#include <unistd.h>
namespace llarp
{
struct udp_listener : public ev_io
{
llarp_udp_io* udp;
udp_listener(int fd, llarp_udp_io* u) : ev_io(fd), udp(u){};
~udp_listener()
{
}
bool
tick();
int
read(byte_t* buf, size_t sz);
int
sendto(const sockaddr* to, const void* data, size_t sz);
};
struct tun : public ev_io
{
llarp_tun_io* t;
device* tunif;
tun(llarp_tun_io* tio, llarp_ev_loop* l)
: ev_io(-1, new LossyWriteQueue_t("tun_write_queue", l, l))
, t(tio)
, tunif(tuntap_init())
{
};
int
sendto(const sockaddr* to, const void* data, size_t sz);
bool
tick();
void
flush_write();
int
read(byte_t* buf, size_t sz);
bool
setup();
~tun()
{
if(tunif)
tuntap_destroy(tunif);
}
};
}; // namespace llarp
struct llarp_poll_loop : public llarp_ev_loop
{
upoll_t* upollfd;
llarp_poll_loop() : upollfd(nullptr)
{
}
~llarp_poll_loop()
{
if(upollfd)
upoll_destroy(upollfd);
}
bool
tcp_connect(struct llarp_tcp_connecter* tcp, const sockaddr* remoteaddr);
llarp::ev_io*
bind_tcp(llarp_tcp_acceptor* tcp, const sockaddr* bindaddr);
virtual bool
udp_listen(llarp_udp_io* l, const sockaddr* src);
bool
running() const;
bool
init();
int
tick(int ms);
int
run();
int
udp_bind(const sockaddr* addr);
bool
close_ev(llarp::ev_io* ev);
llarp::ev_io*
create_tun(llarp_tun_io* tun);
llarp::ev_io*
create_udp(llarp_udp_io* l, const sockaddr* src);
bool
add_ev(llarp::ev_io* e, bool write);
bool
udp_close(llarp_udp_io* l);
void
stop();
};
#endif

@ -464,7 +464,8 @@ llarp_win32_loop::tick(int ms)
{
upoll_event_t events[1024];
int result;
result = upoll_wait(upollfd, events, 1024, ms);
result = upoll_wait(upollfd, events, 1024, ms);
bool didIO = false;
if(result > 0)
{
int idx = 0;
@ -473,28 +474,46 @@ llarp_win32_loop::tick(int ms)
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].data.ptr);
if(ev)
{
if(events[idx].events & UPOLLERR)
llarp::LogDebug(idx, " of ", result, " on ", ev->fd,
" events=", std::to_string(events[idx].events));
if(events[idx].events & UPOLLERR && WSAGetLastError())
{
ev->error();
IO([&]() -> ssize_t {
llarp::LogDebug("upoll error");
ev->error();
return 0;
});
}
else
{
if(events[idx].events & UPOLLIN)
// write THEN READ don't revert me
if(events[idx].events & UPOLLOUT)
{
ev->read(readbuf, sizeof(readbuf));
IO([&]() -> ssize_t {
llarp::LogDebug("upoll out");
ev->flush_write();
return 0;
});
}
if(events[idx].events & UPOLLOUT)
if(events[idx].events & UPOLLIN)
{
ev->flush_write();
ssize_t amount = IO([&]() -> ssize_t {
llarp::LogDebug("upoll in");
return ev->read(readbuf, sizeof(readbuf));
});
if(amount > 0)
didIO = true;
}
}
}
++idx;
}
}
if(result != -1)
tick_listeners();
/// if we didn't get an io events we sleep to avoid 100% cpu use
if(!didIO)
std::this_thread::sleep_for(std::chrono::milliseconds(5));
return result;
}

@ -0,0 +1,243 @@
#include "upoll_sun.h"
#define uhash_slot(K, S) (((K) ^ (K >> 8)) & (S - 1))
static uhash_t*
uhash_create(uint32_t size)
{
int i;
size--;
size |= size >> 1;
size |= size >> 2;
size |= size >> 4;
size |= size >> 8;
size |= size >> 16;
size++;
uhash_t* hash = (uhash_t*)calloc(1, sizeof(uhash_t) + size * sizeof(ulist_t));
hash->count = 0;
hash->size = size;
hash->items = (ulist_t*)(((char*)hash) + sizeof(uhash_t));
for(i = 0; i < size; i++)
{
ulist_init(&hash->items[i]);
}
return hash;
}
static void*
uhash_lookup(uhash_t* hash, intptr_t key)
{
uint32_t slot = uhash_slot(key, hash->size);
ulist_t* q;
ulist_scan(q, &hash->items[slot])
{
uitem_t* i = ulist_data(q, uitem_t, list);
if(i->key == key)
return i->val;
}
return NULL;
}
static void
uhash_insert(uhash_t* hash, intptr_t key, void* val)
{
uint32_t slot = uhash_slot(key, hash->size);
uitem_t* item = (uitem_t*)calloc(1, sizeof(uitem_t));
ulist_init(&item->list);
item->key = key;
item->val = val;
ulist_append(&hash->items[slot], &item->list);
}
static int
uhash_delete(uhash_t* hash, intptr_t key)
{
uint32_t slot = uhash_slot(key, hash->size);
ulist_t* q;
ulist_scan(q, &hash->items[slot])
{
uitem_t* i = ulist_data(q, uitem_t, list);
if(i->key == key)
{
ulist_remove(q);
free(q);
return 1;
}
}
return 0;
}
static int
uhash_destroy(uhash_t* hash)
{
int i;
for(i = 0; i < hash->size; i++)
{
while(!ulist_empty(&hash->items[i]))
{
ulist_t* q = ulist_next(&hash->items[i]);
uitem_t* n = ulist_data(q, uitem_t, list);
ulist_remove(q);
free(n);
}
}
return 0;
}
upoll_t*
upoll_create(uint32_t size)
{
assert(size > 0);
upoll_t* upq = (upoll_t*)calloc(1, sizeof(upoll_t));
ulist_init(&upq->alive);
upq->table = uhash_create(size);
return upq;
}
void
upoll_destroy(upoll_t* upq)
{
assert(upq != NULL);
uhash_destroy(upq->table);
ulist_t* q;
unote_t* n;
while(!ulist_empty(&upq->alive))
{
q = ulist_next(&upq->alive);
n = ulist_data(n, unote_t, queue);
ulist_remove(q);
free(n);
}
free(upq);
}
int
upoll_ctl(upoll_t* upq, int op, intptr_t fd, upoll_event_t* event)
{
if(fd < 0)
return -EBADF;
unote_t* note = NULL;
switch(op)
{
case UPOLL_CTL_ADD:
{
note = (unote_t*)uhash_lookup(upq->table, fd);
if(!note)
{
note = (unote_t*)calloc(1, sizeof(unote_t));
note->upoll = upq;
ulist_init(&note->queue);
note->event = *event;
note->fd = fd;
ulist_append(&upq->alive, &note->queue);
uhash_insert(upq->table, fd, (void*)note);
}
break;
}
case UPOLL_CTL_DEL:
{
note = (unote_t*)uhash_lookup(upq->table, fd);
if(!note)
return -ENOENT;
event = &note->event;
ulist_remove(&note->queue);
uhash_delete(upq->table, fd);
free(note);
break;
}
case UPOLL_CTL_MOD:
{
note = (unote_t*)uhash_lookup(upq->table, fd);
if(!note)
return -ENOENT;
note->event = *event;
break;
}
default:
{
return -EINVAL;
}
}
return 0;
}
int
upoll_wait_poll(upoll_t* upq, upoll_event_t* evs, int nev, int timeout)
{
/* FD_SETSIZE should be smaller than OPEN_MAX, but OPEN_MAX isn't portable */
if(nev > FD_SETSIZE)
nev = FD_SETSIZE;
unote_t* nvec[nev];
int r, i, nfds = 0;
uint32_t hint;
struct pollfd pfds[nev];
unote_t* n = NULL;
ulist_t* s = ulist_mark(&upq->alive);
ulist_t* q = ulist_next(&upq->alive);
while(q != s && nfds < nev)
{
n = ulist_data(q, unote_t, queue);
q = ulist_next(q);
ulist_remove(&n->queue);
ulist_insert(&upq->alive, &n->queue);
nvec[nfds] = n;
pfds[nfds].events = 0;
pfds[nfds].fd = n->fd;
if(n->event.events & UPOLLIN)
{
pfds[nfds].events |= POLLIN;
}
if(n->event.events & UPOLLOUT)
{
pfds[nfds].events |= POLLOUT;
}
nfds++;
}
r = poll(pfds, nfds, timeout);
if(r < 0)
return -errno;
int e = 0;
for(i = 0; i < nfds && e < nev; i++)
{
hint = 0;
if(pfds[i].revents)
{
n = nvec[i];
if(pfds[i].revents & POLLIN)
hint |= UPOLLIN;
if(pfds[i].revents & POLLOUT)
hint |= UPOLLOUT;
if(pfds[i].revents & (POLLERR | POLLNVAL | POLLHUP))
hint |= (UPOLLERR | UPOLLIN);
if(hint & UPOLLERR)
hint &= ~UPOLLOUT;
evs[e].data = n->event.data;
evs[e].events = hint;
++e;
}
}
return e;
}
int
upoll_wait(upoll_t* upq, upoll_event_t* evs, int nev, int timeout)
{
int r = 0;
r = upoll_wait_poll(upq, evs, nev, timeout);
return r;
}

@ -0,0 +1,158 @@
#ifndef _UPOLL_H_
#define _UPOLL_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include <stdlib.h>
#include <stddef.h>
#include <stdint.h>
#define UPOLL_CTL_ADD 1
#define UPOLL_CTL_DEL 2
#define UPOLL_CTL_MOD 3
#define UPOLLIN 0x01
#define UPOLLOUT 0x02
#define UPOLLERR 0x04
#define UPOLLET 0x08
typedef struct upoll upoll_t;
typedef union upoll_data {
void* ptr;
intptr_t fd;
uint32_t u32;
uint64_t u64;
} upoll_data_t;
typedef struct upoll_event
{
uint32_t events;
upoll_data_t data;
} upoll_event_t;
upoll_t*
upoll_create(uint32_t size);
int
upoll_ctl(upoll_t* upq, int op, intptr_t fd, upoll_event_t* event);
int
upoll_wait(upoll_t* upq, upoll_event_t* events, int maxevents, int timeout);
void
upoll_destroy(upoll_t* upq);
#if(defined(__64BIT__) || defined(__x86_64__))
#define __IS_64BIT__
#else
#define __IS_32BIT__
#endif
#include <sys/types.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <stdint.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <poll.h>
typedef struct unote unote_t;
typedef struct ulist ulist_t;
typedef struct uitem uitem_t;
typedef struct uhash uhash_t;
struct ulist
{
ulist_t* next;
ulist_t* prev;
};
struct uitem
{
ulist_t list;
intptr_t key;
void* val;
};
struct uhash
{
uint16_t count;
uint16_t size;
ulist_t* items;
};
struct upoll
{
int fd; /* backend fd (epoll, kqueue) */
ulist_t alive; /* all notes this queue knows about */
uhash_t* table;
};
struct unote
{
upoll_event_t event;
intptr_t fd;
ulist_t queue; /* handle for the queue's notes */
upoll_t* upoll;
};
#define container_of(ptr, type, member) \
((type*)((char*)(ptr)-offsetof(type, member)))
#define ulist_init(q) \
(q)->prev = q; \
(q)->next = q
#define ulist_head(h) (h)->next
#define ulist_next(q) (q)->next
#define ulist_tail(h) (h)->prev
#define ulist_prev(q) (q)->prev
#define ulist_empty(h) (h == (h)->prev)
#define ulist_append(h, x) \
(x)->prev = (h)->prev; \
(x)->prev->next = x; \
(x)->next = h; \
(h)->prev = x
#define ulist_insert(h, x) \
(x)->next = (h)->next; \
(x)->next->prev = x; \
(x)->prev = h; \
(h)->next = x
#define ulist_remove(x) \
(x)->next->prev = (x)->prev; \
(x)->prev->next = (x)->next; \
(x)->prev = x; \
(x)->next = x
#define ulist_mark(h) (h)
#define ulist_scan(q, h) \
for((q) = ulist_head(h); (q) != ulist_mark(h); (q) = ulist_next(q))
#define ulist_data(q, type, link) container_of(q, type, link)
#ifdef __cplusplus
}
#endif
#endif /* _UPOLL_H_ */

@ -0,0 +1,42 @@
#include <iwp/iwp.hpp>
#include <iwp/linklayer.hpp>
#include <router/abstractrouter.hpp>
namespace llarp
{
namespace iwp
{
std::unique_ptr< ILinkLayer >
NewServerFromRouter(AbstractRouter* r)
{
using namespace std::placeholders;
return NewServer(
r->crypto(), r->encryption(), std::bind(&AbstractRouter::rc, r),
std::bind(&AbstractRouter::HandleRecvLinkMessageBuffer, r, _1, _2),
std::bind(&AbstractRouter::OnSessionEstablished, r, _1),
std::bind(&AbstractRouter::CheckRenegotiateValid, r, _1, _2),
std::bind(&AbstractRouter::Sign, r, _1, _2),
std::bind(&AbstractRouter::OnConnectTimeout, r, _1),
std::bind(&AbstractRouter::SessionClosed, r, _1));
}
std::unique_ptr< ILinkLayer >
NewServer(Crypto* c, const SecretKey& enckey, GetRCFunc getrc,
LinkMessageHandler h, SessionEstablishedHandler est,
SessionRenegotiateHandler reneg, SignBufferFunc sign,
TimeoutHandler t, SessionClosedHandler closed)
{
(void)c;
(void)enckey;
(void)getrc;
(void)h;
(void)est;
(void)reneg;
(void)sign;
(void)t;
(void)closed;
// TODO: implement me
return nullptr;
}
} // namespace iwp
} // namespace llarp

@ -1,5 +1,5 @@
#ifndef LLARP_LINK_IWP_HPP
#define LLARP_LINK_IWP_HPP
#ifndef LLARP_IWP_HPP
#define LLARP_IWP_HPP
#include <link/server.hpp>

@ -0,0 +1,180 @@
#include <iwp/linklayer.hpp>
namespace llarp
{
namespace iwp
{
LinkLayer::LinkLayer(Crypto* c, const SecretKey& enckey, GetRCFunc getrc,
LinkMessageHandler h, SessionEstablishedHandler est,
SessionRenegotiateHandler reneg, SignBufferFunc sign,
TimeoutHandler t, SessionClosedHandler closed)
: ILinkLayer(enckey, getrc, h, sign, est, reneg, t, closed), crypto(c)
{
m_FlowCookie.Randomize();
}
LinkLayer::~LinkLayer()
{
}
void
LinkLayer::Pump()
{
ILinkLayer::Pump();
}
const char*
LinkLayer::Name() const
{
return "iwp";
}
bool
LinkLayer::KeyGen(SecretKey& k)
{
k.Zero();
crypto->encryption_keygen(k);
return !k.IsZero();
}
uint16_t
LinkLayer::Rank() const
{
return 2;
}
bool
LinkLayer::Start(Logic* l)
{
if(!ILinkLayer::Start(l))
return false;
/// TODO: change me to true when done
return false;
}
void
LinkLayer::RecvFrom(const Addr& from, const void* pkt, size_t sz)
{
m_OuterMsg.Clear();
llarp_buffer_t sigbuf(pkt, sz);
llarp_buffer_t decodebuf(pkt, sz);
if(!m_OuterMsg.Decode(&decodebuf))
{
LogError("failed to decode outer message");
return;
}
NetID ourNetID;
switch(m_OuterMsg.command)
{
case eOCMD_ObtainFlowID:
sigbuf.sz -= m_OuterMsg.Zsig.size();
if(!crypto->verify(m_OuterMsg.pubkey, sigbuf, m_OuterMsg.Zsig))
{
LogError("failed to verify signature on '",
(char)m_OuterMsg.command, "' message from ", from);
return;
}
if(!ShouldSendFlowID(from))
{
SendReject(from, "no flo 4u :^)");
return;
}
if(m_OuterMsg.netid == ourNetID)
{
if(GenFlowIDFor(m_OuterMsg.pubkey, from, m_OuterMsg.flow))
SendFlowID(from, m_OuterMsg.flow);
else
SendReject(from, "genflow fail");
}
else
SendReject(from, "bad netid");
}
}
ILinkSession*
LinkLayer::NewOutboundSession(const RouterContact& rc,
const AddressInfo& ai)
{
(void)rc;
(void)ai;
// TODO: implement me
return nullptr;
}
void
LinkLayer::SendFlowID(const Addr& to, const FlowID_t& flow)
{
// TODO: implement me
(void)to;
(void)flow;
}
bool
LinkLayer::VerifyFlowID(const PubKey& pk, const Addr& from,
const FlowID_t& flow) const
{
FlowID_t expected;
if(!GenFlowIDFor(pk, from, expected))
return false;
return expected == flow;
}
bool
LinkLayer::GenFlowIDFor(const PubKey& pk, const Addr& from,
FlowID_t& flow) const
{
std::array< byte_t, 128 > tmp = {{0}};
if(inet_ntop(AF_INET6, from.addr6(), (char*)tmp.data(), tmp.size())
== nullptr)
return false;
std::copy_n(pk.begin(), pk.size(), tmp.begin() + 64);
std::copy_n(m_FlowCookie.begin(), m_FlowCookie.size(),
tmp.begin() + 64 + pk.size());
llarp_buffer_t buf(tmp);
ShortHash h;
if(!crypto->shorthash(h, buf))
return false;
std::copy_n(h.begin(), flow.size(), flow.begin());
return true;
}
bool
LinkLayer::ShouldSendFlowID(const Addr& to) const
{
(void)to;
// TODO: implement me
return false;
}
void
LinkLayer::SendReject(const Addr& to, const char* msg)
{
if(strlen(msg) > 14)
{
throw std::logic_error("reject message too big");
}
std::array< byte_t, 120 > pkt;
auto now = Now();
PubKey pk = GetOurRC().pubkey;
OuterMessage m;
m.CreateReject(msg, now, pk);
llarp_buffer_t encodebuf(pkt);
if(!m.Encode(&encodebuf))
{
LogError("failed to encode reject message to ", to);
return;
}
llarp_buffer_t signbuf(pkt.data(), pkt.size() - m.Zsig.size());
if(!Sign(m.Zsig, signbuf))
{
LogError("failed to sign reject messsage to ", to);
return;
}
std::copy_n(m.Zsig.begin(), m.Zsig.size(),
pkt.begin() + (pkt.size() - m.Zsig.size()));
llarp_buffer_t pktbuf(pkt);
SendTo_LL(to, pktbuf);
}
} // namespace iwp
} // namespace llarp

@ -0,0 +1,83 @@
#ifndef LLARP_IWP_LINKLAYER_HPP
#define LLARP_IWP_LINKLAYER_HPP
#include <constants/link_layer.hpp>
#include <crypto/crypto.hpp>
#include <crypto/encrypted.hpp>
#include <crypto/types.hpp>
#include <link/server.hpp>
#include <iwp/outermessage.hpp>
namespace llarp
{
namespace iwp
{
struct LinkLayer final : public ILinkLayer
{
LinkLayer(Crypto *crypto, const SecretKey &encryptionSecretKey,
GetRCFunc getrc, LinkMessageHandler h,
SessionEstablishedHandler established,
SessionRenegotiateHandler reneg, SignBufferFunc sign,
TimeoutHandler timeout, SessionClosedHandler closed);
~LinkLayer();
Crypto *const crypto;
bool
Start(Logic *l) override;
ILinkSession *
NewOutboundSession(const RouterContact &rc,
const AddressInfo &ai) override;
void
Pump() override;
bool
KeyGen(SecretKey &k) override;
const char *
Name() const override;
uint16_t
Rank() const override;
/// verify that a new flow id matches addresses and pubkey
bool
VerifyFlowID(const PubKey &pk, const Addr &from,
const FlowID_t &flow) const;
void
RecvFrom(const Addr &from, const void *buf, size_t sz) override;
private:
bool
GenFlowIDFor(const PubKey &pk, const Addr &from, FlowID_t &flow) const;
bool
ShouldSendFlowID(const Addr &from) const;
void
SendReject(const Addr &to, const char *msg);
void
SendFlowID(const Addr &to, const FlowID_t &flow);
using ActiveFlows_t =
std::unordered_map< FlowID_t, RouterID, FlowID_t::Hash >;
ActiveFlows_t m_ActiveFlows;
using PendingFlows_t = std::unordered_map< Addr, FlowID_t, Addr::Hash >;
/// flows that are pending authentication
PendingFlows_t m_PendingFlows;
/// cookie used in flow id computation
AlignedBuffer< 32 > m_FlowCookie;
OuterMessage m_OuterMsg;
};
} // namespace iwp
} // namespace llarp
#endif

@ -0,0 +1,156 @@
#include <iwp/outermessage.hpp>
namespace llarp
{
namespace iwp
{
std::array< byte_t, 6 > OuterMessage::obtain_flow_id_magic =
std::array< byte_t, 6 >{{'n', 'e', 't', 'i', 'd', '?'}};
std::array< byte_t, 6 > OuterMessage::give_flow_id_magic =
std::array< byte_t, 6 >{{'n', 'e', 't', 'i', 'd', '!'}};
OuterMessage::OuterMessage()
{
Clear();
}
OuterMessage::~OuterMessage()
{
}
void
OuterMessage::Clear()
{
command = 0;
flow.Zero();
netid.Zero();
reject.fill(0);
N.Zero();
X.Zero();
Xsize = 0;
Zsig.Zero();
Zhash.Zero();
pubkey.Zero();
magic.fill(0);
uinteger = 0;
A.reset();
}
void
OuterMessage::CreateReject(const char* msg, llarp_time_t now,
const PubKey& pk)
{
Clear();
std::copy_n(msg, std::min(strlen(msg), reject.size()), reject.begin());
uinteger = now;
pubkey = pk;
}
bool
OuterMessage::Encode(llarp_buffer_t* buf) const
{
if(buf->size_left() < 2)
return false;
*buf->cur = command;
buf->cur++;
*buf->cur = '=';
buf->cur++;
switch(command)
{
case eOCMD_ObtainFlowID:
case eOCMD_GiveFlowID:
if(!buf->write(reject.begin(), reject.end()))
return false;
if(!buf->write(give_flow_id_magic.begin(), give_flow_id_magic.end()))
return false;
if(!buf->write(flow.begin(), flow.end()))
return false;
if(!buf->write(pubkey.begin(), pubkey.end()))
return false;
return buf->write(Zsig.begin(), Zsig.end());
default:
return false;
}
}
bool
OuterMessage::Decode(llarp_buffer_t* buf)
{
static constexpr size_t header_size = 2;
if(buf->size_left() < header_size)
return false;
command = *buf->cur;
++buf->cur;
if(*buf->cur != '=')
return false;
++buf->cur;
switch(command)
{
case eOCMD_ObtainFlowID:
if(!buf->read_into(magic.begin(), magic.end()))
return false;
if(!buf->read_into(netid.begin(), netid.end()))
return false;
if(!buf->read_uint64(uinteger))
return false;
if(!buf->read_into(pubkey.begin(), pubkey.end()))
return false;
if(buf->size_left() <= Zsig.size())
return false;
Xsize = buf->size_left() - Zsig.size();
if(!buf->read_into(X.begin(), X.begin() + Xsize))
return false;
return buf->read_into(Zsig.begin(), Zsig.end());
case eOCMD_GiveFlowID:
if(!buf->read_into(magic.begin(), magic.end()))
return false;
if(!buf->read_into(flow.begin(), flow.end()))
return false;
if(!buf->read_into(pubkey.begin(), pubkey.end()))
return false;
buf->cur += buf->size_left() - Zsig.size();
return buf->read_into(Zsig.begin(), Zsig.end());
case eOCMD_Reject:
if(!buf->read_into(reject.begin(), reject.end()))
return false;
if(!buf->read_uint64(uinteger))
return false;
if(!buf->read_into(pubkey.begin(), pubkey.end()))
return false;
buf->cur += buf->size_left() - Zsig.size();
return buf->read_into(Zsig.begin(), Zsig.end());
case eOCMD_SessionNegotiate:
if(!buf->read_into(flow.begin(), flow.end()))
return false;
if(!buf->read_into(pubkey.begin(), pubkey.end()))
return false;
if(!buf->read_uint64(uinteger))
return false;
if(buf->size_left() == Zsig.size() + 32)
{
A.reset(new AlignedBuffer< 32 >());
if(!buf->read_into(A->begin(), A->end()))
return false;
}
return buf->read_into(Zsig.begin(), Zsig.end());
case eOCMD_TransmitData:
if(!buf->read_into(flow.begin(), flow.end()))
return false;
if(!buf->read_into(N.begin(), N.end()))
return false;
if(buf->size_left() <= Zhash.size())
return false;
Xsize = buf->size_left() - Zhash.size();
if(!buf->read_into(X.begin(), X.begin() + Xsize))
return false;
return buf->read_into(Zhash.begin(), Zhash.end());
default:
return false;
}
}
} // namespace iwp
} // namespace llarp

@ -0,0 +1,86 @@
#ifndef LLARP_IWP_OUTERMESSAGE_HPP
#define LLARP_IWP_OUTERMESSAGE_HPP
#include <crypto/types.hpp>
#include <router_contact.hpp>
#include <util/aligned.hpp>
#include <array>
namespace llarp
{
namespace iwp
{
using FlowID_t = AlignedBuffer< 32 >;
using OuterCommand_t = byte_t;
constexpr OuterCommand_t eOCMD_ObtainFlowID = 'O';
constexpr OuterCommand_t eOCMD_GiveFlowID = 'G';
constexpr OuterCommand_t eOCMD_Reject = 'R';
constexpr OuterCommand_t eOCMD_SessionNegotiate = 'S';
constexpr OuterCommand_t eOCMD_TransmitData = 'D';
using InnerCommand_t = byte_t;
constexpr InnerCommand_t eICMD_KeepAlive = 'k';
constexpr InnerCommand_t eICMD_KeepAliveAck = 'l';
constexpr InnerCommand_t eICMD_Congestion = 'c';
constexpr InnerCommand_t eICMD_AntiCongestion = 'd';
constexpr InnerCommand_t eICMD_Transmit = 't';
constexpr InnerCommand_t eICMD_Ack = 'a';
constexpr InnerCommand_t eICMD_RotateKeys = 'r';
constexpr InnerCommand_t eICMD_UpgradeProtocol = 'u';
constexpr InnerCommand_t eICMD_VersionUpgrade = 'v';
struct OuterMessage
{
// required members
byte_t command;
FlowID_t flow;
OuterMessage();
~OuterMessage();
// static members
static std::array< byte_t, 6 > obtain_flow_id_magic;
static std::array< byte_t, 6 > give_flow_id_magic;
void
CreateReject(const char *msg, llarp_time_t now, const PubKey &pk);
// optional members follow
std::array< byte_t, 6 > magic;
NetID netid;
// either timestamp or counter
uint64_t uinteger;
std::array< byte_t, 14 > reject;
AlignedBuffer< 24 > N;
PubKey pubkey;
std::unique_ptr< AlignedBuffer< 32 > > A;
static constexpr size_t ipv6_mtu = 1280;
static constexpr size_t overhead_size = 16 + 24 + 32;
static constexpr size_t payload_size = ipv6_mtu - overhead_size;
AlignedBuffer< payload_size > X;
size_t Xsize;
ShortHash Zhash;
Signature Zsig;
/// encode to buffer
bool
Encode(llarp_buffer_t *buf) const;
/// decode from buffer
bool
Decode(llarp_buffer_t *buf);
/// clear members
void
Clear();
};
} // namespace iwp
} // namespace llarp
#endif

@ -1 +0,0 @@
#include <link/encoder.hpp>

@ -1,18 +0,0 @@
#ifndef LLARP_LINK_ENCODER_HPP
#define LLARP_LINK_ENCODER_HPP
struct llarp_buffer_t;
namespace llarp
{
struct KeyExchangeNonce;
class RouterContact;
/// encode Link Introduce Message onto a buffer
/// if router is nullptr then the LIM's r member is omitted.
bool
EncodeLIM(llarp_buffer_t* buff, const RouterContact* router,
const KeyExchangeNonce& n);
} // namespace llarp
#endif

@ -1,362 +0,0 @@
#include <link/iwp.hpp>
#include <link/iwp_internal.hpp>
#include <router/abstractrouter.hpp>
namespace llarp
{
namespace iwp
{
std::array< byte_t, 6 > OuterMessage::obtain_flow_id_magic =
std::array< byte_t, 6 >{{'n', 'e', 't', 'i', 'd', '?'}};
std::array< byte_t, 6 > OuterMessage::give_flow_id_magic =
std::array< byte_t, 6 >{{'n', 'e', 't', 'i', 'd', '!'}};
OuterMessage::OuterMessage()
{
Clear();
}
OuterMessage::~OuterMessage()
{
}
void
OuterMessage::Clear()
{
command = 0;
flow.Zero();
netid.Zero();
reject.fill(0);
N.Zero();
X.Zero();
Xsize = 0;
Zsig.Zero();
Zhash.Zero();
pubkey.Zero();
magic.fill(0);
uinteger = 0;
A.reset();
}
void
OuterMessage::CreateReject(const char* msg, llarp_time_t now,
const PubKey& pk)
{
Clear();
std::copy_n(msg, std::min(strlen(msg), reject.size()), reject.begin());
uinteger = now;
pubkey = pk;
}
bool
OuterMessage::Encode(llarp_buffer_t* buf) const
{
if(buf->size_left() < 2)
return false;
*buf->cur = command;
buf->cur++;
*buf->cur = '=';
buf->cur++;
switch(command)
{
case eOCMD_ObtainFlowID:
case eOCMD_GiveFlowID:
if(!buf->write(reject.begin(), reject.end()))
return false;
if(!buf->write(give_flow_id_magic.begin(), give_flow_id_magic.end()))
return false;
if(!buf->write(flow.begin(), flow.end()))
return false;
if(!buf->write(pubkey.begin(), pubkey.end()))
return false;
return buf->write(Zsig.begin(), Zsig.end());
default:
return false;
}
}
bool
OuterMessage::Decode(llarp_buffer_t* buf)
{
static constexpr size_t header_size = 2;
if(buf->size_left() < header_size)
return false;
command = *buf->cur;
++buf->cur;
if(*buf->cur != '=')
return false;
++buf->cur;
switch(command)
{
case eOCMD_ObtainFlowID:
if(!buf->read_into(magic.begin(), magic.end()))
return false;
if(!buf->read_into(netid.begin(), netid.end()))
return false;
if(!buf->read_uint64(uinteger))
return false;
if(!buf->read_into(pubkey.begin(), pubkey.end()))
return false;
if(buf->size_left() <= Zsig.size())
return false;
Xsize = buf->size_left() - Zsig.size();
if(!buf->read_into(X.begin(), X.begin() + Xsize))
return false;
return buf->read_into(Zsig.begin(), Zsig.end());
case eOCMD_GiveFlowID:
if(!buf->read_into(magic.begin(), magic.end()))
return false;
if(!buf->read_into(flow.begin(), flow.end()))
return false;
if(!buf->read_into(pubkey.begin(), pubkey.end()))
return false;
buf->cur += buf->size_left() - Zsig.size();
return buf->read_into(Zsig.begin(), Zsig.end());
case eOCMD_Reject:
if(!buf->read_into(reject.begin(), reject.end()))
return false;
if(!buf->read_uint64(uinteger))
return false;
if(!buf->read_into(pubkey.begin(), pubkey.end()))
return false;
buf->cur += buf->size_left() - Zsig.size();
return buf->read_into(Zsig.begin(), Zsig.end());
case eOCMD_SessionNegotiate:
if(!buf->read_into(flow.begin(), flow.end()))
return false;
if(!buf->read_into(pubkey.begin(), pubkey.end()))
return false;
if(!buf->read_uint64(uinteger))
return false;
if(buf->size_left() == Zsig.size() + 32)
{
A.reset(new AlignedBuffer< 32 >());
if(!buf->read_into(A->begin(), A->end()))
return false;
}
return buf->read_into(Zsig.begin(), Zsig.end());
case eOCMD_TransmitData:
if(!buf->read_into(flow.begin(), flow.end()))
return false;
if(!buf->read_into(N.begin(), N.end()))
return false;
if(buf->size_left() <= Zhash.size())
return false;
Xsize = buf->size_left() - Zhash.size();
if(!buf->read_into(X.begin(), X.begin() + Xsize))
return false;
return buf->read_into(Zhash.begin(), Zhash.end());
default:
return false;
}
}
LinkLayer::LinkLayer(Crypto* c, const SecretKey& enckey, GetRCFunc getrc,
LinkMessageHandler h, SessionEstablishedHandler est,
SessionRenegotiateHandler reneg, SignBufferFunc sign,
TimeoutHandler t, SessionClosedHandler closed)
: ILinkLayer(enckey, getrc, h, sign, est, reneg, t, closed), crypto(c)
{
m_FlowCookie.Randomize();
}
LinkLayer::~LinkLayer()
{
}
void
LinkLayer::Pump()
{
ILinkLayer::Pump();
}
const char*
LinkLayer::Name() const
{
return "iwp";
}
bool
LinkLayer::KeyGen(SecretKey& k)
{
k.Zero();
crypto->encryption_keygen(k);
return !k.IsZero();
}
uint16_t
LinkLayer::Rank() const
{
return 2;
}
bool
LinkLayer::Start(Logic* l)
{
if(!ILinkLayer::Start(l))
return false;
/// TODO: change me to true when done
return false;
}
void
LinkLayer::RecvFrom(const Addr& from, const void* pkt, size_t sz)
{
m_OuterMsg.Clear();
llarp_buffer_t sigbuf(pkt, sz);
llarp_buffer_t decodebuf(pkt, sz);
if(!m_OuterMsg.Decode(&decodebuf))
{
LogError("failed to decode outer message");
return;
}
NetID ourNetID;
switch(m_OuterMsg.command)
{
case eOCMD_ObtainFlowID:
sigbuf.sz -= m_OuterMsg.Zsig.size();
if(!crypto->verify(m_OuterMsg.pubkey, sigbuf, m_OuterMsg.Zsig))
{
LogError("failed to verify signature on '",
(char)m_OuterMsg.command, "' message from ", from);
return;
}
if(!ShouldSendFlowID(from))
{
SendReject(from, "no flo 4u :^)");
return;
}
if(m_OuterMsg.netid == ourNetID)
{
if(GenFlowIDFor(m_OuterMsg.pubkey, from, m_OuterMsg.flow))
SendFlowID(from, m_OuterMsg.flow);
else
SendReject(from, "genflow fail");
}
else
SendReject(from, "bad netid");
}
}
ILinkSession*
LinkLayer::NewOutboundSession(const RouterContact& rc,
const AddressInfo& ai)
{
(void)rc;
(void)ai;
// TODO: implement me
return nullptr;
}
void
LinkLayer::SendFlowID(const Addr& to, const FlowID_t& flow)
{
// TODO: implement me
(void)to;
(void)flow;
}
bool
LinkLayer::VerifyFlowID(const PubKey& pk, const Addr& from,
const FlowID_t& flow) const
{
FlowID_t expected;
if(!GenFlowIDFor(pk, from, expected))
return false;
return expected == flow;
}
bool
LinkLayer::GenFlowIDFor(const PubKey& pk, const Addr& from,
FlowID_t& flow) const
{
std::array< byte_t, 128 > tmp = {{0}};
if(inet_ntop(AF_INET6, from.addr6(), (char*)tmp.data(), tmp.size())
== nullptr)
return false;
std::copy_n(pk.begin(), pk.size(), tmp.begin() + 64);
std::copy_n(m_FlowCookie.begin(), m_FlowCookie.size(),
tmp.begin() + 64 + pk.size());
llarp_buffer_t buf(tmp);
ShortHash h;
if(!crypto->shorthash(h, buf))
return false;
std::copy_n(h.begin(), flow.size(), flow.begin());
return true;
}
bool
LinkLayer::ShouldSendFlowID(const Addr& to) const
{
(void)to;
// TODO: implement me
return false;
}
void
LinkLayer::SendReject(const Addr& to, const char* msg)
{
if(strlen(msg) > 14)
{
throw std::logic_error("reject message too big");
}
std::array< byte_t, 120 > pkt;
auto now = Now();
PubKey pk = GetOurRC().pubkey;
OuterMessage m;
m.CreateReject(msg, now, pk);
llarp_buffer_t encodebuf(pkt);
if(!m.Encode(&encodebuf))
{
LogError("failed to encode reject message to ", to);
return;
}
llarp_buffer_t signbuf(pkt.data(), pkt.size() - m.Zsig.size());
if(!Sign(m.Zsig, signbuf))
{
LogError("failed to sign reject messsage to ", to);
return;
}
std::copy_n(m.Zsig.begin(), m.Zsig.size(),
pkt.begin() + (pkt.size() - m.Zsig.size()));
llarp_buffer_t pktbuf(pkt);
SendTo_LL(to, pktbuf);
}
std::unique_ptr< ILinkLayer >
NewServerFromRouter(AbstractRouter* r)
{
using namespace std::placeholders;
return NewServer(
r->crypto(), r->encryption(), std::bind(&AbstractRouter::rc, r),
std::bind(&AbstractRouter::HandleRecvLinkMessageBuffer, r, _1, _2),
std::bind(&AbstractRouter::OnSessionEstablished, r, _1),
std::bind(&AbstractRouter::CheckRenegotiateValid, r, _1, _2),
std::bind(&AbstractRouter::Sign, r, _1, _2),
std::bind(&AbstractRouter::OnConnectTimeout, r, _1),
std::bind(&AbstractRouter::SessionClosed, r, _1));
}
std::unique_ptr< ILinkLayer >
NewServer(Crypto* c, const SecretKey& enckey, GetRCFunc getrc,
LinkMessageHandler h, SessionEstablishedHandler est,
SessionRenegotiateHandler reneg, SignBufferFunc sign,
TimeoutHandler t, SessionClosedHandler closed)
{
(void)c;
(void)enckey;
(void)getrc;
(void)h;
(void)est;
(void)reneg;
(void)sign;
(void)t;
(void)closed;
// TODO: implement me
return nullptr;
}
} // namespace iwp
} // namespace llarp

@ -1,322 +0,0 @@
#ifndef LLARP_LINK_IWP_INTERNAL_HPP
#define LLARP_LINK_IWP_INTERNAL_HPP
#include <constants/link_layer.hpp>
#include <crypto/crypto.hpp>
#include <crypto/encrypted.hpp>
#include <crypto/types.hpp>
#include <link/server.hpp>
#include <link/session.hpp>
#include <array>
#include <bitset>
#include <deque>
namespace llarp
{
struct Crypto;
namespace iwp
{
struct LinkLayer;
using FlowID_t = llarp::AlignedBuffer< 32 >;
using OuterCommand_t = byte_t;
constexpr OuterCommand_t eOCMD_ObtainFlowID = 'O';
constexpr OuterCommand_t eOCMD_GiveFlowID = 'G';
constexpr OuterCommand_t eOCMD_Reject = 'R';
constexpr OuterCommand_t eOCMD_SessionNegotiate = 'S';
constexpr OuterCommand_t eOCMD_TransmitData = 'D';
using InnerCommand_t = byte_t;
constexpr InnerCommand_t eICMD_KeepAlive = 'k';
constexpr InnerCommand_t eICMD_KeepAliveAck = 'l';
constexpr InnerCommand_t eICMD_Congestion = 'c';
constexpr InnerCommand_t eICMD_AntiCongestion = 'd';
constexpr InnerCommand_t eICMD_Transmit = 't';
constexpr InnerCommand_t eICMD_Ack = 'a';
constexpr InnerCommand_t eICMD_RotateKeys = 'r';
constexpr InnerCommand_t eICMD_UpgradeProtocol = 'u';
constexpr InnerCommand_t eICMD_VersionUpgrade = 'v';
struct OuterMessage
{
// required memebers
byte_t command;
FlowID_t flow;
OuterMessage();
~OuterMessage();
// static members
static std::array< byte_t, 6 > obtain_flow_id_magic;
static std::array< byte_t, 6 > give_flow_id_magic;
void
CreateReject(const char *msg, llarp_time_t now, const PubKey &pk);
// optional memebers follow
std::array< byte_t, 6 > magic;
NetID netid;
// either timestamp or counter
uint64_t uinteger;
std::array< byte_t, 14 > reject;
AlignedBuffer< 24 > N;
PubKey pubkey;
std::unique_ptr< AlignedBuffer< 32 > > A;
static constexpr size_t ipv6_mtu = 1280;
static constexpr size_t overhead_size = 16 + 24 + 32;
static constexpr size_t payload_size = ipv6_mtu - overhead_size;
AlignedBuffer< payload_size > X;
size_t Xsize;
ShortHash Zhash;
Signature Zsig;
/// encode to buffer
bool
Encode(llarp_buffer_t *buf) const;
/// decode from buffer
bool
Decode(llarp_buffer_t *buf);
/// clear members
void
Clear();
};
/// TODO: fixme
constexpr size_t MaxFrags = 8;
using MessageBuffer_t = AlignedBuffer< MAX_LINK_MSG_SIZE >;
using FragmentLen_t = uint16_t;
using SequenceNum_t = uint32_t;
using WritePacketFunc = std::function< void(const llarp_buffer_t &) >;
struct MessageState
{
/// default
MessageState();
/// inbound
MessageState(const ShortHash &digest, SequenceNum_t num);
/// outbound
MessageState(const ShortHash &digest, const llarp_buffer_t &buf,
SequenceNum_t num);
/// the expected hash of the message
const ShortHash expectedHash;
/// which fragments have we got
std::bitset< MaxFrags > acks;
/// the message buffer
MessageBuffer_t msg;
/// the message's size
FragmentLen_t sz;
/// the last activity we have had
llarp_time_t lastActiveAt;
// sequence number
const SequenceNum_t seqno;
/// return true if this message is to be removed
/// because of inactivity
bool
IsExpired(llarp_time_t now) const;
/// return true if we have recvieved or sent the underlying message in
/// full.
bool
IsDone() const;
/// return true if we should retransmit some packets
bool
ShouldRetransmit(llarp_time_t now) const;
/// transmit unacked fragments
bool
TransmitUnacked(WritePacketFunc write_pkt) const;
/// transmit acks packet
bool
TransmitAcks(WritePacketFunc write_pkt);
};
struct Session final : public llarp::ILinkSession
{
/// base
Session(LinkLayer *parent);
/// inbound
Session(LinkLayer *parent, const llarp::Addr &from);
/// outbound
Session(LinkLayer *parent, const RouterContact &rc,
const AddressInfo &ai);
~Session();
util::StatusObject
ExtractStatus() const override
{
// TODO: fill me in.
return {};
}
/// pump ll io
void
PumpIO();
/// tick every 1 s
void
TickIO(llarp_time_t now);
/// queue full message
bool
QueueMessageBuffer(const llarp_buffer_t &buf);
/// return true if the session is established and handshaked and all that
/// jazz
bool
SessionIsEstablished();
/// inbound start
void
Accept();
/// sendclose
void
Close();
/// start outbound handshake
void
Connect();
// set tls config
void
Configure();
/// low level recv
void
Recv_ll(const void *buf, size_t sz);
/// verify a lim
bool
VerfiyLIM(const llarp::LinkIntroMessage *msg);
SharedSecret m_TXKey;
SharedSecret m_RXKey;
LinkLayer *m_Parent;
llarp::Crypto *const crypto;
llarp::RouterContact remoteRC;
llarp::Addr remoteAddr;
using MessageBuffer_t = llarp::AlignedBuffer< MAX_LINK_MSG_SIZE >;
using Seqno_t = uint32_t;
using Proto_t = uint8_t;
using FragLen_t = uint16_t;
using Flags_t = uint8_t;
using Fragno_t = uint8_t;
using Cmd_t = uint8_t;
static constexpr size_t fragoverhead = sizeof(Proto_t) + sizeof(Cmd_t)
+ sizeof(Flags_t) + sizeof(Fragno_t) + sizeof(FragLen_t)
+ sizeof(Seqno_t);
/// keepalive command
static constexpr Cmd_t PING = 0;
/// transmit fragment command
static constexpr Cmd_t XMIT = 1;
/// fragment ack command
static constexpr Cmd_t FACK = 2;
/// maximum number of fragments
static constexpr uint8_t maxfrags = 8;
/// maximum fragment size
static constexpr FragLen_t fragsize = MAX_LINK_MSG_SIZE / maxfrags;
using MessageHolder_t = std::unordered_map< Seqno_t, MessageState >;
MessageHolder_t m_Inbound;
MessageHolder_t m_Outbound;
using Buf_t = std::vector< byte_t >;
using IOQueue_t = std::deque< Buf_t >;
IOQueue_t ll_recv;
IOQueue_t ll_send;
};
struct LinkLayer final : public llarp::ILinkLayer
{
LinkLayer(llarp::Crypto *crypto, const SecretKey &encryptionSecretKey,
llarp::GetRCFunc getrc, llarp::LinkMessageHandler h,
llarp::SessionEstablishedHandler established,
llarp::SessionRenegotiateHandler reneg,
llarp::SignBufferFunc sign, llarp::TimeoutHandler timeout,
llarp::SessionClosedHandler closed);
~LinkLayer();
llarp::Crypto *const crypto;
bool
Start(llarp::Logic *l) override;
ILinkSession *
NewOutboundSession(const llarp::RouterContact &rc,
const llarp::AddressInfo &ai) override;
void
Pump() override;
bool
KeyGen(SecretKey &k) override;
const char *
Name() const override;
uint16_t
Rank() const override;
/// verify that a new flow id matches addresses and pubkey
bool
VerifyFlowID(const PubKey &pk, const Addr &from,
const FlowID_t &flow) const;
void
RecvFrom(const llarp::Addr &from, const void *buf, size_t sz) override;
private:
bool
GenFlowIDFor(const PubKey &pk, const Addr &from, FlowID_t &flow) const;
bool
ShouldSendFlowID(const Addr &from) const;
void
SendReject(const Addr &to, const char *msg);
void
SendFlowID(const Addr &to, const FlowID_t &flow);
using ActiveFlows_t =
std::unordered_map< FlowID_t, RouterID, FlowID_t::Hash >;
ActiveFlows_t m_ActiveFlows;
using PendingFlows_t = std::unordered_map< Addr, FlowID_t, Addr::Hash >;
/// flows that are pending authentication
PendingFlows_t m_PendingFlows;
/// cookie used in flow id computation
AlignedBuffer< 32 > m_FlowCookie;
OuterMessage m_OuterMsg;
};
} // namespace iwp
} // namespace llarp
#endif

@ -233,16 +233,17 @@ namespace llarp
llarp_udp_io m_udp;
SecretKey m_SecretKey;
Mutex m_AuthedLinksMutex
ACQUIRED_BEFORE(m_PendingMutex); // protects m_AuthedLinks
std::unordered_multimap< RouterID, std::unique_ptr< ILinkSession >,
RouterID::Hash >
m_AuthedLinks GUARDED_BY(m_AuthedLinksMutex);
Mutex m_PendingMutex
ACQUIRED_AFTER(m_AuthedLinksMutex); // protects m_Pending
std::unordered_multimap< llarp::Addr, std::unique_ptr< ILinkSession >,
llarp::Addr::Hash >
m_Pending GUARDED_BY(m_PendingMutex);
using AuthedLinks =
std::unordered_multimap< RouterID, std::unique_ptr< ILinkSession >,
RouterID::Hash >;
using Pending =
std::unordered_multimap< llarp::Addr, std::unique_ptr< ILinkSession >,
llarp::Addr::Hash >;
Mutex m_AuthedLinksMutex ACQUIRED_BEFORE(m_PendingMutex);
AuthedLinks m_AuthedLinks GUARDED_BY(m_AuthedLinksMutex);
Mutex m_PendingMutex ACQUIRED_AFTER(m_AuthedLinksMutex);
Pending m_Pending GUARDED_BY(m_PendingMutex);
};
} // namespace llarp

@ -48,7 +48,7 @@ namespace llarp
std::function< Addr(void) > GetRemoteEndpoint;
// get remote rc
std::function< llarp::RouterContact(void) > GetRemoteRC;
std::function< RouterContact(void) > GetRemoteRC;
/// handle a valid LIM
std::function< bool(const LinkIntroMessage *msg) > GotLIM;

@ -1,26 +0,0 @@
#ifndef LLARP_LINK_UTP_HPP
#define LLARP_LINK_UTP_HPP
#include <memory>
#include <link/server.hpp>
namespace llarp
{
struct AbstractRouter;
namespace utp
{
std::unique_ptr< ILinkLayer >
NewServer(llarp::Crypto* crypto, const SecretKey& routerEncSecret,
llarp::GetRCFunc getrc, llarp::LinkMessageHandler h,
llarp::SessionEstablishedHandler est,
llarp::SessionRenegotiateHandler reneg,
llarp::SignBufferFunc sign, llarp::TimeoutHandler timeout,
llarp::SessionClosedHandler closed);
std::unique_ptr< ILinkLayer >
NewServerFromRouter(AbstractRouter* r);
} // namespace utp
} // namespace llarp
#endif

@ -55,16 +55,16 @@ namespace llarp
~LR_CommitMessage();
void
Clear();
Clear() override;
bool
DecodeKey(const llarp_buffer_t &key, llarp_buffer_t *buf);
DecodeKey(const llarp_buffer_t &key, llarp_buffer_t *buf) override;
bool
BEncode(llarp_buffer_t *buf) const;
BEncode(llarp_buffer_t *buf) const override;
bool
HandleMessage(AbstractRouter *router) const;
HandleMessage(AbstractRouter *router) const override;
bool
AsyncDecrypt(llarp::path::PathContext *context) const;

@ -6,9 +6,8 @@
#include <crypto/crypto_libsodium.hpp>
#include <dht/context.hpp>
#include <dht/node.hpp>
#include <link/iwp.hpp>
#include <iwp/iwp.hpp>
#include <link/server.hpp>
#include <link/utp.hpp>
#include <messages/link_message.hpp>
#include <net/net.hpp>
#include <rpc/rpc.hpp>
@ -17,6 +16,7 @@
#include <util/logger.hpp>
#include <util/metrics.hpp>
#include <util/str.hpp>
#include <utp/utp.hpp>
#include <fstream>
#include <cstdlib>

@ -11,7 +11,7 @@
#include <service/handler.hpp>
#include <service/protocol.hpp>
// minimum time between interoset shifts
// minimum time between introset shifts
#ifndef MIN_SHIFT_INTERVAL
#define MIN_SHIFT_INTERVAL (5 * 1000)
#endif
@ -336,7 +336,7 @@ namespace llarp
HandleHiddenServiceFrame(path::Path* p, const ProtocolFrame* frame);
std::string
Name() const;
Name() const override;
private:
/// swap remoteIntro with next intro
@ -357,7 +357,7 @@ namespace llarp
m_BadIntros;
llarp_time_t lastShift = 0;
uint16_t m_LookupFails = 0;
uint16_t m_BuildFails = 0;
uint16_t m_BuildFails = 0;
};
// passed a sendto context when we have a path established otherwise

@ -183,6 +183,8 @@ namespace llarp
}
prev = gIt;
}
m_stream.flush();
}
}
} // namespace metrics

@ -0,0 +1,26 @@
#include <utp/inbound_message.hpp>
#include <string.h>
namespace llarp
{
namespace utp
{
bool
InboundMessage::IsExpired(llarp_time_t now) const
{
return now > lastActive && now - lastActive >= 2000;
}
bool
InboundMessage::AppendData(const byte_t* ptr, uint16_t sz)
{
if(buffer.size_left() < sz)
return false;
memcpy(buffer.cur, ptr, sz);
buffer.cur += sz;
return true;
}
} // namespace utp
} // namespace llarp

@ -0,0 +1,91 @@
#ifndef LLARP_UTP_INBOUND_MESSAGE_HPP
#define LLARP_UTP_INBOUND_MESSAGE_HPP
#include <constants/link_layer.hpp>
#include <util/aligned.hpp>
#include <util/types.hpp>
#include <utp_types.h> // for uint32
#include <string.h>
namespace llarp
{
namespace utp
{
/// size of keyed hash
constexpr size_t FragmentHashSize = 32;
/// size of outer nonce
constexpr size_t FragmentNonceSize = 32;
/// size of outer overhead
constexpr size_t FragmentOverheadSize =
FragmentHashSize + FragmentNonceSize;
/// max fragment payload size
constexpr size_t FragmentBodyPayloadSize = 512;
/// size of inner nonce
constexpr size_t FragmentBodyNonceSize = 24;
/// size of fragment body overhead
constexpr size_t FragmentBodyOverhead = FragmentBodyNonceSize
+ sizeof(uint32) + sizeof(uint16_t) + sizeof(uint16_t);
/// size of fragment body
constexpr size_t FragmentBodySize =
FragmentBodyOverhead + FragmentBodyPayloadSize;
/// size of fragment
constexpr size_t FragmentBufferSize =
FragmentOverheadSize + FragmentBodySize;
static_assert(FragmentBufferSize == 608, "Fragment Buffer Size is not 608");
/// buffer for a single utp fragment
using FragmentBuffer = AlignedBuffer< FragmentBufferSize >;
/// maximum size for send queue for a session before we drop
constexpr size_t MaxSendQueueSize = 64;
/// buffer for a link layer message
using MessageBuffer = AlignedBuffer< MAX_LINK_MSG_SIZE >;
/// pending inbound message being received
struct InboundMessage
{
/// timestamp of last activity
llarp_time_t lastActive;
/// the underlying message buffer
MessageBuffer _msg;
/// for accessing message buffer
llarp_buffer_t buffer;
InboundMessage() : lastActive(0), _msg(), buffer(_msg)
{
}
InboundMessage(const InboundMessage& other)
: lastActive(other.lastActive), _msg(other._msg), buffer(_msg)
{
buffer.cur = buffer.base + (other.buffer.cur - other.buffer.base);
buffer.sz = other.buffer.sz;
}
/// return true if this inbound message can be removed due to expiration
bool
IsExpired(llarp_time_t now) const;
/// append data at ptr of size sz bytes to message buffer
/// increment current position
/// return false if we don't have enough room
/// return true on success
bool
AppendData(const byte_t* ptr, uint16_t sz);
};
inline bool
operator==(const InboundMessage& lhs, const InboundMessage& rhs)
{
return lhs.buffer.base == rhs.buffer.base;
}
} // namespace utp
} // namespace llarp
#endif

@ -0,0 +1,408 @@
#include <utp/linklayer.hpp>
#include <utp/session.hpp>
#ifdef __linux__
#include <linux/errqueue.h>
#include <netinet/ip_icmp.h>
#endif
#ifdef _WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
#include <wspiapi.h>
#endif
#ifndef IP_DONTFRAGMENT
#define IP_DONTFRAGMENT IP_DONTFRAG
#endif
#include <functional>
#include <string.h>
namespace llarp
{
namespace utp
{
Crypto*
LinkLayer::OurCrypto()
{
return _crypto;
}
uint64
LinkLayer::OnConnect(utp_callback_arguments* arg)
{
LinkLayer* l =
static_cast< LinkLayer* >(utp_context_get_userdata(arg->context));
Session* session = static_cast< Session* >(utp_get_userdata(arg->socket));
if(session && l)
session->OutboundLinkEstablished(l);
return 0;
}
uint64
LinkLayer::SendTo(utp_callback_arguments* arg)
{
LinkLayer* l =
static_cast< LinkLayer* >(utp_context_get_userdata(arg->context));
if(l == nullptr)
return 0;
LogDebug("utp_sendto ", Addr(*arg->address), " ", arg->len, " bytes");
// For whatever reason, the UTP_UDP_DONTFRAG flag is set
// on the socket itself....which isn't correct and causes
// winsock (at minimum) to reeee
// here, we check its value, then set fragmentation the _right_
// way. Naturally, Linux has its own special procedure.
// Of course, the flag itself is cleared. -rick
#ifndef _WIN32
// No practical method of doing this on NetBSD or Darwin
// without resorting to raw sockets
#if !(__NetBSD__ || __OpenBSD__ || (__APPLE__ && __MACH__))
#ifndef __linux__
if(arg->flags == 2)
{
int val = 1;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_DONTFRAGMENT, &val, sizeof(val));
}
else
{
int val = 0;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_DONTFRAGMENT, &val, sizeof(val));
}
#else
if(arg->flags == 2)
{
int val = IP_PMTUDISC_DO;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_MTU_DISCOVER, &val, sizeof(val));
}
else
{
int val = IP_PMTUDISC_DONT;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_MTU_DISCOVER, &val, sizeof(val));
}
#endif
#endif
arg->flags = 0;
if(::sendto(l->m_udp.fd, (char*)arg->buf, arg->len, arg->flags,
arg->address, arg->address_len)
== -1
&& errno)
#else
if(arg->flags == 2)
{
char val = 1;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_DONTFRAGMENT, &val, sizeof(val));
}
else
{
char val = 0;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_DONTFRAGMENT, &val, sizeof(val));
}
arg->flags = 0;
if(::sendto(l->m_udp.fd, (char*)arg->buf, arg->len, arg->flags,
arg->address, arg->address_len)
== -1)
#endif
{
#ifdef _WIN32
char buf[1024];
int err = WSAGetLastError();
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, LANG_NEUTRAL,
buf, 1024, nullptr);
LogError("sendto failed: ", buf);
#else
LogError("sendto failed: ", strerror(errno));
#endif
}
return 0;
}
uint64
LinkLayer::OnError(utp_callback_arguments* arg)
{
Session* session = static_cast< Session* >(utp_get_userdata(arg->socket));
LinkLayer* link =
static_cast< LinkLayer* >(utp_context_get_userdata(arg->context));
if(session && link)
{
if(arg->error_code == UTP_ETIMEDOUT)
{
link->HandleTimeout(session);
utp_close(arg->socket);
}
else
session->Close();
}
return 0;
}
uint64
LinkLayer::OnLog(utp_callback_arguments* arg)
{
LogDebug(arg->buf);
return 0;
}
LinkLayer::LinkLayer(Crypto* crypto, const SecretKey& routerEncSecret,
GetRCFunc getrc, LinkMessageHandler h,
SignBufferFunc sign,
SessionEstablishedHandler established,
SessionRenegotiateHandler reneg,
TimeoutHandler timeout, SessionClosedHandler closed)
: ILinkLayer(routerEncSecret, getrc, h, sign, established, reneg,
timeout, closed)
{
_crypto = crypto;
_utp_ctx = utp_init(2);
utp_context_set_userdata(_utp_ctx, this);
utp_set_callback(_utp_ctx, UTP_SENDTO, &LinkLayer::SendTo);
utp_set_callback(_utp_ctx, UTP_ON_ACCEPT, &LinkLayer::OnAccept);
utp_set_callback(_utp_ctx, UTP_ON_CONNECT, &LinkLayer::OnConnect);
utp_set_callback(_utp_ctx, UTP_ON_STATE_CHANGE,
&LinkLayer::OnStateChange);
utp_set_callback(_utp_ctx, UTP_ON_READ, &LinkLayer::OnRead);
utp_set_callback(_utp_ctx, UTP_ON_ERROR, &LinkLayer::OnError);
utp_set_callback(_utp_ctx, UTP_LOG, &LinkLayer::OnLog);
utp_context_set_option(_utp_ctx, UTP_LOG_NORMAL, 1);
utp_context_set_option(_utp_ctx, UTP_LOG_MTU, 1);
utp_context_set_option(_utp_ctx, UTP_LOG_DEBUG, 1);
utp_context_set_option(_utp_ctx, UTP_SNDBUF, MAX_LINK_MSG_SIZE * 16);
utp_context_set_option(_utp_ctx, UTP_RCVBUF, MAX_LINK_MSG_SIZE * 64);
}
LinkLayer::~LinkLayer()
{
utp_destroy(_utp_ctx);
}
uint16_t
LinkLayer::Rank() const
{
return 1;
}
void
LinkLayer::RecvFrom(const Addr& from, const void* buf, size_t sz)
{
utp_process_udp(_utp_ctx, (const byte_t*)buf, sz, from, from.SockLen());
}
#ifdef __linux__
void
LinkLayer::ProcessICMP()
{
#ifndef TESTNET
do
{
byte_t vec_buf[4096], ancillary_buf[4096];
struct iovec iov = {vec_buf, sizeof(vec_buf)};
struct sockaddr_in remote;
struct msghdr msg;
ssize_t len;
struct cmsghdr* cmsg;
struct sock_extended_err* e;
struct sockaddr* icmp_addr;
struct sockaddr_in* icmp_sin;
memset(&msg, 0, sizeof(msg));
msg.msg_name = &remote;
msg.msg_namelen = sizeof(remote);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
msg.msg_control = ancillary_buf;
msg.msg_controllen = sizeof(ancillary_buf);
len = recvmsg(m_udp.fd, &msg, MSG_ERRQUEUE | MSG_DONTWAIT);
if(len < 0)
{
if(errno == EAGAIN || errno == EWOULDBLOCK)
errno = 0;
else
LogError("failed to read icmp for utp ", strerror(errno));
return;
}
for(cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg))
{
if(cmsg->cmsg_type != IP_RECVERR)
{
continue;
}
if(cmsg->cmsg_level != SOL_IP)
{
continue;
}
e = (struct sock_extended_err*)CMSG_DATA(cmsg);
if(!e)
continue;
if(e->ee_origin != SO_EE_ORIGIN_ICMP)
{
continue;
}
icmp_addr = (struct sockaddr*)SO_EE_OFFENDER(e);
icmp_sin = (struct sockaddr_in*)icmp_addr;
if(icmp_sin->sin_port != 0)
{
continue;
}
if(e->ee_type == 3 && e->ee_code == 4)
{
utp_process_icmp_fragmentation(_utp_ctx, vec_buf, len,
(struct sockaddr*)&remote,
sizeof(remote), e->ee_info);
}
else
{
utp_process_icmp_error(_utp_ctx, vec_buf, len,
(struct sockaddr*)&remote, sizeof(remote));
}
}
} while(true);
#endif
}
#endif
void
LinkLayer::Pump()
{
#ifdef __linux__
ProcessICMP();
#endif
std::set< RouterID > sessions;
{
Lock l(&m_AuthedLinksMutex);
auto itr = m_AuthedLinks.begin();
while(itr != m_AuthedLinks.end())
{
sessions.insert(itr->first);
++itr;
}
}
ILinkLayer::Pump();
{
Lock l(&m_AuthedLinksMutex);
for(const auto& pk : sessions)
{
if(m_AuthedLinks.count(pk) == 0)
{
// all sessions were removed
SessionClosed(pk);
}
}
}
utp_issue_deferred_acks(_utp_ctx);
}
void
LinkLayer::Stop()
{
ForEachSession([](ILinkSession* s) { s->SendClose(); });
}
bool
LinkLayer::KeyGen(SecretKey& k)
{
OurCrypto()->encryption_keygen(k);
return true;
}
void
LinkLayer::Tick(llarp_time_t now)
{
utp_check_timeouts(_utp_ctx);
ILinkLayer::Tick(now);
}
utp_socket*
LinkLayer::NewSocket()
{
return utp_create_socket(_utp_ctx);
}
const char*
LinkLayer::Name() const
{
return "utp";
}
ILinkSession*
LinkLayer::NewOutboundSession(const RouterContact& rc,
const AddressInfo& addr)
{
return new Session(this, utp_create_socket(_utp_ctx), rc, addr);
}
uint64
LinkLayer::OnRead(utp_callback_arguments* arg)
{
Session* self = static_cast< Session* >(utp_get_userdata(arg->socket));
if(self)
{
if(self->state == Session::eClose)
{
return 0;
}
if(!self->Recv(arg->buf, arg->len))
{
LogDebug("recv fail for ", self->remoteAddr);
self->Close();
return 0;
}
utp_read_drained(arg->socket);
}
else
{
LogWarn("utp_socket got data with no underlying session");
utp_close(arg->socket);
}
return 0;
}
uint64
LinkLayer::OnStateChange(utp_callback_arguments* arg)
{
Session* session = static_cast< Session* >(utp_get_userdata(arg->socket));
if(session)
{
if(arg->state == UTP_STATE_WRITABLE)
{
session->PumpWrite();
}
else if(arg->state == UTP_STATE_EOF)
{
LogDebug("got eof from ", session->remoteAddr);
session->Close();
}
}
return 0;
}
uint64
LinkLayer::OnAccept(utp_callback_arguments* arg)
{
LinkLayer* self =
static_cast< LinkLayer* >(utp_context_get_userdata(arg->context));
Addr remote(*arg->address);
LogDebug("utp accepted from ", remote);
Session* session = new Session(self, arg->socket, remote);
if(!self->PutSession(session))
{
session->Close();
delete session;
}
else
session->OnLinkEstablished(self);
return 0;
}
} // namespace utp
} // namespace llarp

@ -0,0 +1,108 @@
#ifndef LLARP_UTP_LINKLAYER_HPP
#define LLARP_UTP_LINKLAYER_HPP
#include <utp/inbound_message.hpp>
#include <crypto/crypto.hpp>
#include <crypto/types.hpp>
#include <link/server.hpp>
#include <utp.h>
#include <deque>
namespace llarp
{
namespace utp
{
struct LinkLayer final : public ILinkLayer
{
utp_context* _utp_ctx = nullptr;
Crypto* _crypto = nullptr;
// low level read callback
static uint64
OnRead(utp_callback_arguments* arg);
// low level sendto callback
static uint64
SendTo(utp_callback_arguments* arg);
/// error callback
static uint64
OnError(utp_callback_arguments* arg);
/// state change callback
static uint64
OnStateChange(utp_callback_arguments*);
static uint64
OnConnect(utp_callback_arguments*);
/// accept callback
static uint64
OnAccept(utp_callback_arguments*);
/// logger callback
static uint64
OnLog(utp_callback_arguments* arg);
/// construct
LinkLayer(Crypto* crypto, const SecretKey& routerEncSecret,
GetRCFunc getrc, LinkMessageHandler h, SignBufferFunc sign,
SessionEstablishedHandler established,
SessionRenegotiateHandler reneg, TimeoutHandler timeout,
SessionClosedHandler closed);
/// destruct
~LinkLayer();
/// get AI rank
uint16_t
Rank() const;
/// handle low level recv
void
RecvFrom(const Addr& from, const void* buf, size_t sz);
#ifdef __linux__
/// process ICMP stuff on linux
void
ProcessICMP();
#endif
Crypto*
OurCrypto();
/// pump sessions
void
Pump();
/// stop link layer
void
Stop();
/// regenerate transport keypair
bool
KeyGen(SecretKey& k);
/// do tick
void
Tick(llarp_time_t now);
/// create new outbound session
ILinkSession*
NewOutboundSession(const RouterContact& rc, const AddressInfo& addr);
/// create new socket
utp_socket*
NewSocket();
/// get ai name
const char*
Name() const;
};
} // namespace utp
} // namespace llarp
#endif

@ -1,30 +1,8 @@
#include <link/utp.hpp>
#include <utp/session.hpp>
#include <crypto/crypto.hpp>
#include <link/server.hpp>
#include <utp/linklayer.hpp>
#include <messages/discard.hpp>
#include <messages/link_intro.hpp>
#include <router/abstractrouter.hpp>
#include <util/buffer.hpp>
#include <util/endian.hpp>
#ifdef __linux__
#include <linux/errqueue.h>
#include <netinet/ip_icmp.h>
#endif
#ifdef _WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
#include <wspiapi.h>
#endif
#ifndef IP_DONTFRAGMENT
#define IP_DONTFRAGMENT IP_DONTFRAG
#endif
#include <link/utp_internal.hpp>
#include <util/metrics.hpp>
namespace llarp
@ -33,22 +11,6 @@ namespace llarp
{
using namespace std::placeholders;
bool
InboundMessage::IsExpired(llarp_time_t now) const
{
return now > lastActive && now - lastActive >= 2000;
}
bool
InboundMessage::AppendData(const byte_t* ptr, uint16_t sz)
{
if(buffer.size_left() < sz)
return false;
memcpy(buffer.cur, ptr, sz);
buffer.cur += sz;
return true;
}
void
Session::OnLinkEstablished(LinkLayer* p)
{
@ -63,12 +25,6 @@ namespace llarp
return parent->OurCrypto();
}
Crypto*
LinkLayer::OurCrypto()
{
return _crypto;
}
/// pump tx queue
void
Session::PumpWrite()
@ -262,332 +218,6 @@ namespace llarp
return remoteAddr;
}
uint64
LinkLayer::OnConnect(utp_callback_arguments* arg)
{
LinkLayer* l =
static_cast< LinkLayer* >(utp_context_get_userdata(arg->context));
Session* session = static_cast< Session* >(utp_get_userdata(arg->socket));
if(session && l)
session->OutboundLinkEstablished(l);
return 0;
}
uint64
LinkLayer::SendTo(utp_callback_arguments* arg)
{
LinkLayer* l =
static_cast< LinkLayer* >(utp_context_get_userdata(arg->context));
if(l == nullptr)
return 0;
LogDebug("utp_sendto ", Addr(*arg->address), " ", arg->len, " bytes");
// For whatever reason, the UTP_UDP_DONTFRAG flag is set
// on the socket itself....which isn't correct and causes
// winsock (at minimum) to reeee
// here, we check its value, then set fragmentation the _right_
// way. Naturally, Linux has its own special procedure.
// Of course, the flag itself is cleared. -rick
#ifndef _WIN32
// No practical method of doing this on NetBSD or Darwin
// without resorting to raw sockets
#if !(__NetBSD__ || __OpenBSD__ || (__APPLE__ && __MACH__))
#ifndef __linux__
if(arg->flags == 2)
{
int val = 1;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_DONTFRAGMENT, &val, sizeof(val));
}
else
{
int val = 0;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_DONTFRAGMENT, &val, sizeof(val));
}
#else
if(arg->flags == 2)
{
int val = IP_PMTUDISC_DO;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_MTU_DISCOVER, &val, sizeof(val));
}
else
{
int val = IP_PMTUDISC_DONT;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_MTU_DISCOVER, &val, sizeof(val));
}
#endif
#endif
arg->flags = 0;
if(::sendto(l->m_udp.fd, (char*)arg->buf, arg->len, arg->flags,
arg->address, arg->address_len)
== -1
&& errno)
#else
if(arg->flags == 2)
{
char val = 1;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_DONTFRAGMENT, &val, sizeof(val));
}
else
{
char val = 0;
setsockopt(l->m_udp.fd, IPPROTO_IP, IP_DONTFRAGMENT, &val, sizeof(val));
}
arg->flags = 0;
if(::sendto(l->m_udp.fd, (char*)arg->buf, arg->len, arg->flags,
arg->address, arg->address_len)
== -1)
#endif
{
#ifdef _WIN32
char buf[1024];
int err = WSAGetLastError();
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, LANG_NEUTRAL,
buf, 1024, nullptr);
LogError("sendto failed: ", buf);
#else
LogError("sendto failed: ", strerror(errno));
#endif
}
return 0;
}
uint64
LinkLayer::OnError(utp_callback_arguments* arg)
{
Session* session = static_cast< Session* >(utp_get_userdata(arg->socket));
LinkLayer* link =
static_cast< LinkLayer* >(utp_context_get_userdata(arg->context));
if(session && link)
{
if(arg->error_code == UTP_ETIMEDOUT)
{
link->HandleTimeout(session);
utp_close(arg->socket);
}
else
session->Close();
}
return 0;
}
uint64
LinkLayer::OnLog(utp_callback_arguments* arg)
{
LogDebug(arg->buf);
return 0;
}
LinkLayer::LinkLayer(Crypto* crypto, const SecretKey& routerEncSecret,
GetRCFunc getrc, LinkMessageHandler h,
SignBufferFunc sign,
SessionEstablishedHandler established,
SessionRenegotiateHandler reneg,
TimeoutHandler timeout, SessionClosedHandler closed)
: ILinkLayer(routerEncSecret, getrc, h, sign, established, reneg,
timeout, closed)
{
_crypto = crypto;
_utp_ctx = utp_init(2);
utp_context_set_userdata(_utp_ctx, this);
utp_set_callback(_utp_ctx, UTP_SENDTO, &LinkLayer::SendTo);
utp_set_callback(_utp_ctx, UTP_ON_ACCEPT, &LinkLayer::OnAccept);
utp_set_callback(_utp_ctx, UTP_ON_CONNECT, &LinkLayer::OnConnect);
utp_set_callback(_utp_ctx, UTP_ON_STATE_CHANGE,
&LinkLayer::OnStateChange);
utp_set_callback(_utp_ctx, UTP_ON_READ, &LinkLayer::OnRead);
utp_set_callback(_utp_ctx, UTP_ON_ERROR, &LinkLayer::OnError);
utp_set_callback(_utp_ctx, UTP_LOG, &LinkLayer::OnLog);
utp_context_set_option(_utp_ctx, UTP_LOG_NORMAL, 1);
utp_context_set_option(_utp_ctx, UTP_LOG_MTU, 1);
utp_context_set_option(_utp_ctx, UTP_LOG_DEBUG, 1);
utp_context_set_option(_utp_ctx, UTP_SNDBUF, MAX_LINK_MSG_SIZE * 16);
utp_context_set_option(_utp_ctx, UTP_RCVBUF, MAX_LINK_MSG_SIZE * 64);
}
LinkLayer::~LinkLayer()
{
utp_destroy(_utp_ctx);
}
uint16_t
LinkLayer::Rank() const
{
return 1;
}
void
LinkLayer::RecvFrom(const Addr& from, const void* buf, size_t sz)
{
utp_process_udp(_utp_ctx, (const byte_t*)buf, sz, from, from.SockLen());
}
#ifdef __linux__
void
LinkLayer::ProcessICMP()
{
#ifndef TESTNET
do
{
byte_t vec_buf[4096], ancillary_buf[4096];
struct iovec iov = {vec_buf, sizeof(vec_buf)};
struct sockaddr_in remote;
struct msghdr msg;
ssize_t len;
struct cmsghdr* cmsg;
struct sock_extended_err* e;
struct sockaddr* icmp_addr;
struct sockaddr_in* icmp_sin;
memset(&msg, 0, sizeof(msg));
msg.msg_name = &remote;
msg.msg_namelen = sizeof(remote);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
msg.msg_control = ancillary_buf;
msg.msg_controllen = sizeof(ancillary_buf);
len = recvmsg(m_udp.fd, &msg, MSG_ERRQUEUE | MSG_DONTWAIT);
if(len < 0)
{
if(errno == EAGAIN || errno == EWOULDBLOCK)
errno = 0;
else
LogError("failed to read icmp for utp ", strerror(errno));
return;
}
for(cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg))
{
if(cmsg->cmsg_type != IP_RECVERR)
{
continue;
}
if(cmsg->cmsg_level != SOL_IP)
{
continue;
}
e = (struct sock_extended_err*)CMSG_DATA(cmsg);
if(!e)
continue;
if(e->ee_origin != SO_EE_ORIGIN_ICMP)
{
continue;
}
icmp_addr = (struct sockaddr*)SO_EE_OFFENDER(e);
icmp_sin = (struct sockaddr_in*)icmp_addr;
if(icmp_sin->sin_port != 0)
{
continue;
}
if(e->ee_type == 3 && e->ee_code == 4)
{
utp_process_icmp_fragmentation(_utp_ctx, vec_buf, len,
(struct sockaddr*)&remote,
sizeof(remote), e->ee_info);
}
else
{
utp_process_icmp_error(_utp_ctx, vec_buf, len,
(struct sockaddr*)&remote, sizeof(remote));
}
}
} while(true);
#endif
}
#endif
void
LinkLayer::Pump()
{
#ifdef __linux__
ProcessICMP();
#endif
std::set< RouterID > sessions;
{
Lock l(&m_AuthedLinksMutex);
auto itr = m_AuthedLinks.begin();
while(itr != m_AuthedLinks.end())
{
sessions.insert(itr->first);
++itr;
}
}
ILinkLayer::Pump();
{
Lock l(&m_AuthedLinksMutex);
for(const auto& pk : sessions)
{
if(m_AuthedLinks.count(pk) == 0)
{
// all sessions were removed
SessionClosed(pk);
}
}
}
utp_issue_deferred_acks(_utp_ctx);
}
void
LinkLayer::Stop()
{
ForEachSession([](ILinkSession* s) { s->SendClose(); });
}
bool
LinkLayer::KeyGen(SecretKey& k)
{
OurCrypto()->encryption_keygen(k);
return true;
}
void
LinkLayer::Tick(llarp_time_t now)
{
utp_check_timeouts(_utp_ctx);
ILinkLayer::Tick(now);
}
utp_socket*
LinkLayer::NewSocket()
{
return utp_create_socket(_utp_ctx);
}
const char*
LinkLayer::Name() const
{
return "utp";
}
std::unique_ptr< ILinkLayer >
NewServer(Crypto* crypto, const SecretKey& routerEncSecret, GetRCFunc getrc,
LinkMessageHandler h, SessionEstablishedHandler est,
SessionRenegotiateHandler reneg, SignBufferFunc sign,
TimeoutHandler timeout, SessionClosedHandler closed)
{
return std::unique_ptr< ILinkLayer >(
new LinkLayer(crypto, routerEncSecret, getrc, h, sign, est, reneg,
timeout, closed));
}
std::unique_ptr< ILinkLayer >
NewServerFromRouter(AbstractRouter* r)
{
using namespace std::placeholders;
return NewServer(
r->crypto(), r->encryption(), std::bind(&AbstractRouter::rc, r),
std::bind(&AbstractRouter::HandleRecvLinkMessageBuffer, r, _1, _2),
std::bind(&AbstractRouter::OnSessionEstablished, r, _1),
std::bind(&AbstractRouter::CheckRenegotiateValid, r, _1, _2),
std::bind(&AbstractRouter::Sign, r, _1, _2),
std::bind(&AbstractRouter::OnConnectTimeout, r, _1),
std::bind(&AbstractRouter::SessionClosed, r, _1));
}
/// base constructor
Session::Session(LinkLayer* p)
{
@ -872,78 +502,6 @@ namespace llarp
}
}
ILinkSession*
LinkLayer::NewOutboundSession(const RouterContact& rc,
const AddressInfo& addr)
{
return new Session(this, utp_create_socket(_utp_ctx), rc, addr);
}
uint64
LinkLayer::OnRead(utp_callback_arguments* arg)
{
Session* self = static_cast< Session* >(utp_get_userdata(arg->socket));
if(self)
{
if(self->state == Session::eClose)
{
return 0;
}
if(!self->Recv(arg->buf, arg->len))
{
LogDebug("recv fail for ", self->remoteAddr);
self->Close();
return 0;
}
utp_read_drained(arg->socket);
}
else
{
LogWarn("utp_socket got data with no underlying session");
utp_close(arg->socket);
}
return 0;
}
uint64
LinkLayer::OnStateChange(utp_callback_arguments* arg)
{
Session* session = static_cast< Session* >(utp_get_userdata(arg->socket));
if(session)
{
if(arg->state == UTP_STATE_WRITABLE)
{
session->PumpWrite();
}
else if(arg->state == UTP_STATE_EOF)
{
LogDebug("got eof from ", session->remoteAddr);
session->Close();
}
}
return 0;
}
uint64
LinkLayer::OnAccept(utp_callback_arguments* arg)
{
LinkLayer* self =
static_cast< LinkLayer* >(utp_context_get_userdata(arg->context));
Addr remote(*arg->address);
LogDebug("utp accepted from ", remote);
Session* session = new Session(self, arg->socket, remote);
if(!self->PutSession(session))
{
session->Close();
delete session;
}
else
session->OnLinkEstablished(self);
return 0;
}
bool
Session::EncryptThenHash(const byte_t* ptr, uint32_t msgid, uint16_t length,
uint16_t remaining)
@ -1183,7 +741,5 @@ namespace llarp
{
lastActive = parent->Now();
}
} // namespace utp
} // namespace llarp

@ -1,94 +1,18 @@
#ifndef LLARP_LINK_UTP_INTERNAL_HPP
#define LLARP_LINK_UTP_INTERNAL_HPP
#ifndef LLARP_UTP_SESSION_HPP
#define LLARP_UTP_SESSION_HPP
#include <constants/link_layer.hpp>
#include <crypto/types.hpp>
#include <link/utp.hpp>
#include <util/aligned.hpp>
#include <utp.h>
#include <crypto/crypto.hpp>
#include <link/session.hpp>
#include <utp/inbound_message.hpp>
#include <tuple>
#include <deque>
#include <utp.h>
namespace llarp
{
struct Crypto;
namespace utp
{
/// size of keyed hash
constexpr size_t FragmentHashSize = 32;
/// size of outer nonce
constexpr size_t FragmentNonceSize = 32;
/// size of outer overhead
constexpr size_t FragmentOverheadSize =
FragmentHashSize + FragmentNonceSize;
/// max fragment payload size
constexpr size_t FragmentBodyPayloadSize = 512;
/// size of inner nonce
constexpr size_t FragmentBodyNonceSize = 24;
/// size of fragment body overhead
constexpr size_t FragmentBodyOverhead = FragmentBodyNonceSize
+ sizeof(uint32) + sizeof(uint16_t) + sizeof(uint16_t);
/// size of fragment body
constexpr size_t FragmentBodySize =
FragmentBodyOverhead + FragmentBodyPayloadSize;
/// size of fragment
constexpr size_t FragmentBufferSize =
FragmentOverheadSize + FragmentBodySize;
static_assert(FragmentBufferSize == 608, "Fragment Buffer Size is not 608");
/// buffer for a single utp fragment
using FragmentBuffer = llarp::AlignedBuffer< FragmentBufferSize >;
/// maximum size for send queue for a session before we drop
constexpr size_t MaxSendQueueSize = 64;
/// buffer for a link layer message
using MessageBuffer = llarp::AlignedBuffer< MAX_LINK_MSG_SIZE >;
struct LinkLayer;
/// pending inbound message being received
struct InboundMessage
{
/// timestamp of last activity
llarp_time_t lastActive;
/// the underlying message buffer
MessageBuffer _msg;
/// for accessing message buffer
llarp_buffer_t buffer;
InboundMessage() : lastActive(0), _msg(), buffer(_msg)
{
}
InboundMessage(const InboundMessage& other)
: lastActive(other.lastActive), _msg(other._msg), buffer(_msg)
{
buffer.cur = buffer.base + (other.buffer.cur - other.buffer.base);
buffer.sz = other.buffer.sz;
}
bool
operator==(const InboundMessage& other) const
{
return buffer.base == other.buffer.base;
}
/// return true if this inbound message can be removed due to expiration
bool
IsExpired(llarp_time_t now) const;
/// append data at ptr of size sz bytes to message buffer
/// increment current position
/// return false if we don't have enough room
/// return true on success
bool
AppendData(const byte_t* ptr, uint16_t sz);
};
struct Session final : public ILinkSession
{
/// remote router's rc
@ -165,10 +89,10 @@ namespace llarp
};
/// get router
// llarp::Router*
// Router*
// Router();
llarp::Crypto*
Crypto*
OurCrypto();
/// session state, call EnterState(State) to set
@ -278,97 +202,6 @@ namespace llarp
void
MarkEstablished();
};
struct LinkLayer final : public ILinkLayer
{
utp_context* _utp_ctx = nullptr;
llarp::Crypto* _crypto = nullptr;
// low level read callback
static uint64
OnRead(utp_callback_arguments* arg);
// low level sendto callback
static uint64
SendTo(utp_callback_arguments* arg);
/// error callback
static uint64
OnError(utp_callback_arguments* arg);
/// state change callback
static uint64
OnStateChange(utp_callback_arguments*);
static uint64
OnConnect(utp_callback_arguments*);
/// accept callback
static uint64
OnAccept(utp_callback_arguments*);
/// logger callback
static uint64
OnLog(utp_callback_arguments* arg);
/// construct
LinkLayer(llarp::Crypto* crypto, const SecretKey& routerEncSecret,
llarp::GetRCFunc getrc, llarp::LinkMessageHandler h,
llarp::SignBufferFunc sign,
llarp::SessionEstablishedHandler established,
llarp::SessionRenegotiateHandler reneg,
llarp::TimeoutHandler timeout,
llarp::SessionClosedHandler closed);
/// destruct
~LinkLayer();
/// get AI rank
uint16_t
Rank() const;
/// handle low level recv
void
RecvFrom(const Addr& from, const void* buf, size_t sz);
#ifdef __linux__
/// process ICMP stuff on linux
void
ProcessICMP();
#endif
llarp::Crypto*
OurCrypto();
/// pump sessions
void
Pump();
/// stop link layer
void
Stop();
/// regenerate transport keypair
bool
KeyGen(SecretKey& k);
/// do tick
void
Tick(llarp_time_t now);
/// create new outbound session
ILinkSession*
NewOutboundSession(const RouterContact& rc, const AddressInfo& addr);
/// create new socket
utp_socket*
NewSocket();
/// get ai name
const char*
Name() const;
};
} // namespace utp
} // namespace llarp

@ -0,0 +1,39 @@
#include <utp/utp.hpp>
#include <utp/linklayer.hpp>
#include <router/abstractrouter.hpp>
namespace llarp
{
namespace utp
{
using namespace std::placeholders;
std::unique_ptr< ILinkLayer >
NewServer(Crypto* crypto, const SecretKey& routerEncSecret, GetRCFunc getrc,
LinkMessageHandler h, SessionEstablishedHandler est,
SessionRenegotiateHandler reneg, SignBufferFunc sign,
TimeoutHandler timeout, SessionClosedHandler closed)
{
return std::unique_ptr< ILinkLayer >(
new LinkLayer(crypto, routerEncSecret, getrc, h, sign, est, reneg,
timeout, closed));
}
std::unique_ptr< ILinkLayer >
NewServerFromRouter(AbstractRouter* r)
{
using namespace std::placeholders;
return NewServer(
r->crypto(), r->encryption(), std::bind(&AbstractRouter::rc, r),
std::bind(&AbstractRouter::HandleRecvLinkMessageBuffer, r, _1, _2),
std::bind(&AbstractRouter::OnSessionEstablished, r, _1),
std::bind(&AbstractRouter::CheckRenegotiateValid, r, _1, _2),
std::bind(&AbstractRouter::Sign, r, _1, _2),
std::bind(&AbstractRouter::OnConnectTimeout, r, _1),
std::bind(&AbstractRouter::SessionClosed, r, _1));
}
} // namespace utp
} // namespace llarp

@ -0,0 +1,24 @@
#ifndef LLARP_UTP_UTP_HPP
#define LLARP_UTP_UTP_HPP
#include <memory>
#include <link/server.hpp>
namespace llarp
{
struct AbstractRouter;
namespace utp
{
std::unique_ptr< ILinkLayer >
NewServer(Crypto* crypto, const SecretKey& routerEncSecret, GetRCFunc getrc,
LinkMessageHandler h, SessionEstablishedHandler est,
SessionRenegotiateHandler reneg, SignBufferFunc sign,
TimeoutHandler timeout, SessionClosedHandler closed);
std::unique_ptr< ILinkLayer >
NewServerFromRouter(AbstractRouter* r);
} // namespace utp
} // namespace llarp
#endif

@ -6,6 +6,8 @@ You can learn more about the high level design of LLARP [here](docs/high-level.t
And you can read the LLARP protocol specification [here](docs/proto_v0.txt)
You can view documentation on how to get started [here](https://loki-project.github.io/loki-docs/Lokinet/LokinetOverview/) .
![build status](https://gitlab.com/lokiproject/loki-network/badges/master/pipeline.svg "build status")
## Building

@ -1,8 +1,8 @@
#include <link/utp.hpp>
#include <link/iwp.hpp>
#include <ev/ev.h>
#include <iwp/iwp.hpp>
#include <messages/link_intro.hpp>
#include <messages/discard.hpp>
#include <utp/utp.hpp>
#include <crypto/crypto_libsodium.hpp>

@ -2,7 +2,6 @@
using System.Diagnostics;
using System.IO;
using System.Reflection;
using System.Text;
using System.Windows.Forms;
namespace network.loki.lokinet.win32.ui

Loading…
Cancel
Save