lokinet/llarp/messages/link_message_parser.cpp

141 lines
3.0 KiB
C++
Raw Normal View History

2019-06-15 14:55:13 +00:00
#include <messages/link_message_parser.hpp>
#include <messages/dht_immediate.hpp>
#include <messages/discard.hpp>
#include <messages/link_intro.hpp>
#include <messages/link_message.hpp>
#include <messages/relay_commit.hpp>
#include <messages/relay_status.hpp>
2019-06-15 14:55:13 +00:00
#include <messages/relay.hpp>
#include <router_contact.hpp>
#include <util/buffer.hpp>
2019-09-01 12:10:49 +00:00
#include <util/logging/logger.hpp>
2019-06-15 14:55:13 +00:00
#include <memory>
namespace llarp
{
struct LinkMessageParser::msg_holder_t
2019-06-15 14:55:13 +00:00
{
LinkIntroMessage i;
RelayDownstreamMessage d;
RelayUpstreamMessage u;
DHTImmediateMessage m;
LR_CommitMessage c;
LR_StatusMessage s;
2019-06-15 14:55:13 +00:00
DiscardMessage x;
msg_holder_t() = default;
};
LinkMessageParser::LinkMessageParser(AbstractRouter* _router)
: router(_router), from(nullptr), msg(nullptr), holder(std::make_unique<msg_holder_t>())
2019-06-15 14:55:13 +00:00
{
}
2019-07-30 23:42:13 +00:00
LinkMessageParser::~LinkMessageParser() = default;
2019-06-15 14:55:13 +00:00
bool
LinkMessageParser::operator()(llarp_buffer_t* buffer, llarp_buffer_t* key)
2019-06-15 14:55:13 +00:00
{
// we are reading the first key
if (firstkey)
2019-06-15 14:55:13 +00:00
{
llarp_buffer_t strbuf;
// check for empty dict
if (!key)
2019-06-15 14:55:13 +00:00
return false;
// we are expecting the first key to be 'a'
if (!(*key == "a"))
2019-06-15 14:55:13 +00:00
{
llarp::LogWarn("message has no message type");
return false;
}
if (!bencode_read_string(buffer, &strbuf))
2019-06-15 14:55:13 +00:00
{
llarp::LogWarn("could not read value of message type");
return false;
}
// bad key size
if (strbuf.sz != 1)
2019-06-15 14:55:13 +00:00
{
llarp::LogWarn("bad mesage type size: ", strbuf.sz);
return false;
}
// create the message to parse based off message type
llarp::LogDebug("inbound message ", *strbuf.cur);
switch (*strbuf.cur)
2019-06-15 14:55:13 +00:00
{
case 'i':
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
msg = &holder->i;
2019-06-15 14:55:13 +00:00
break;
case 'd':
msg = &holder->d;
break;
case 'u':
msg = &holder->u;
break;
case 'm':
msg = &holder->m;
break;
case 'c':
msg = &holder->c;
break;
case 's':
msg = &holder->s;
break;
2019-06-15 14:55:13 +00:00
case 'x':
msg = &holder->x;
break;
default:
return false;
}
msg->session = from;
firstkey = false;
2019-06-15 14:55:13 +00:00
return true;
}
// check for last element
if (!key)
2019-06-15 14:55:13 +00:00
return MessageDone();
return msg->DecodeKey(*key, buffer);
}
bool
LinkMessageParser::MessageDone()
2019-06-15 14:55:13 +00:00
{
bool result = false;
if (msg)
2019-06-15 14:55:13 +00:00
{
result = msg->HandleMessage(router);
}
Reset();
return result;
}
bool
LinkMessageParser::ProcessFrom(ILinkSession* src, const llarp_buffer_t& buf)
2019-06-15 14:55:13 +00:00
{
if (!src)
2019-06-15 14:55:13 +00:00
{
llarp::LogWarn("no link session");
return false;
}
from = src;
2019-06-15 14:55:13 +00:00
firstkey = true;
ManagedBuffer copy(buf);
return bencode_read_dict(*this, &copy.underlying);
}
void
LinkMessageParser::Reset()
2019-06-15 14:55:13 +00:00
{
if (msg)
2019-06-15 14:55:13 +00:00
msg->Clear();
msg = nullptr;
}
} // namespace llarp