lokinet/llarp/ev_kqueue.hpp

357 lines
7.0 KiB
C++
Raw Normal View History

2018-05-29 12:14:50 +00:00
#ifndef EV_KQUEUE_HPP
#define EV_KQUEUE_HPP
#include <llarp/buffer.h>
#include <llarp/net.h>
2018-08-03 00:34:47 +00:00
#if __FreeBSD__ || __OpenBSD__ || __NetBSD__ || (__APPLE__ && __MACH__)
// kqueue / kevent
2018-06-17 15:26:00 +00:00
#include <sys/event.h>
#include <sys/time.h>
#endif
2018-05-29 12:14:50 +00:00
// MacOS needs this
#ifndef SOCK_NONBLOCK
2018-06-17 15:26:00 +00:00
#include <fcntl.h>
#define SOCK_NONBLOCK O_NONBLOCK
#endif
2018-05-29 12:14:50 +00:00
// original upstream
#include <unistd.h>
#include <cstdio>
2018-07-27 04:30:32 +00:00
#include <llarp/net.hpp>
2018-05-29 12:14:50 +00:00
#include "ev.hpp"
#include "logger.hpp"
namespace llarp
{
struct udp_listener : public ev_io
{
llarp_udp_io* udp;
udp_listener(int fd, llarp_udp_io* u) : ev_io(fd), udp(u){};
~udp_listener()
{
}
virtual int
read(void* buf, size_t sz)
{
sockaddr_in6 src;
2018-08-01 03:32:13 +00:00
socklen_t slen = sizeof(src);
2018-05-29 12:14:50 +00:00
sockaddr* addr = (sockaddr*)&src;
2018-06-18 22:05:02 +00:00
ssize_t ret = ::recvfrom(fd, buf, sz, 0, addr, &slen);
2018-05-29 12:14:50 +00:00
if(ret == -1)
return -1;
udp->recvfrom(udp, addr, buf, ret);
return 0;
}
virtual int
sendto(const sockaddr* to, const void* data, size_t sz)
{
socklen_t slen;
switch(to->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
default:
return -1;
}
2018-08-01 03:32:13 +00:00
if(!fd)
{
printf("kqueue sendto fd empty\n");
return -1;
}
2018-06-04 13:08:35 +00:00
ssize_t sent = ::sendto(fd, data, sz, 0, to, slen);
2018-05-29 12:14:50 +00:00
if(sent == -1)
perror("kqueue sendto()");
2018-05-29 12:14:50 +00:00
return sent;
}
};
2018-08-21 13:33:33 +00:00
struct tun : public ev_io
{
llarp_tun_io* t;
device* tunif;
tun(llarp_tun_io* tio)
: ev_io(-1)
, t(tio)
, tunif(tuntap_init())
{
};
int
sendto(const sockaddr* to, const void* data, size_t sz)
{
return -1;
}
void
flush_write()
{
if(t->before_write)
{
t->before_write(t);
ev_io::flush_write();
}
}
int
read(void* buf, size_t sz)
{
ssize_t ret = tuntap_read(tunif, buf, sz);
if(ret > 0 && t->recvpkt)
t->recvpkt(t, buf, ret);
return ret;
}
bool
setup()
{
llarp::LogDebug("set up tunif");
if(tuntap_start(tunif, TUNTAP_MODE_TUNNEL, 0) == -1)
return false;
llarp::LogDebug("set ifname to ", t->ifname);
if(tuntap_set_ifname(tunif, t->ifname) == -1)
return false;
if(tuntap_set_ip(tunif, t->ifaddr, t->netmask) == -1)
return false;
if(tuntap_up(tunif) == -1)
return false;
fd = tunif->tun_fd;
return fd != -1;
}
~tun()
{
}
};
2018-05-29 12:14:50 +00:00
}; // namespace llarp
struct llarp_kqueue_loop : public llarp_ev_loop
{
int kqueuefd;
2018-06-06 12:46:26 +00:00
struct kevent change; /* event we want to monitor */
2018-05-29 12:14:50 +00:00
llarp_kqueue_loop() : kqueuefd(-1)
{
}
~llarp_kqueue_loop()
{
}
2018-08-15 15:46:39 +00:00
llarp::ev_io*
create_tun(llarp_tun_io* tun)
{
2018-08-21 13:33:33 +00:00
llarp::tun* t = new llarp::tun(tun);
if(t->setup())
return t;
delete t;
2018-08-15 15:46:39 +00:00
return nullptr;
}
2018-05-29 12:14:50 +00:00
bool
init()
{
2018-06-06 12:46:26 +00:00
if(kqueuefd == -1)
{
2018-05-29 12:14:50 +00:00
kqueuefd = kqueue();
}
return kqueuefd != -1;
}
2018-08-10 03:51:38 +00:00
bool
running() const
{
return kqueuefd != -1;
}
2018-06-06 12:46:26 +00:00
int
2018-06-06 21:23:57 +00:00
tick(int ms)
2018-06-06 12:46:26 +00:00
{
struct kevent events[1024];
int result;
2018-08-03 01:24:53 +00:00
timespec t;
t.tv_sec = 0;
2018-08-03 05:32:07 +00:00
t.tv_nsec = ms * 1000UL;
2018-08-03 01:24:53 +00:00
result = kevent(kqueuefd, nullptr, 0, events, 1024, &t);
2018-06-06 12:46:26 +00:00
// result: 0 is a timeout
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].udata);
2018-08-10 03:51:38 +00:00
ev->read(readbuf, sizeof(readbuf));
2018-06-06 12:46:26 +00:00
++idx;
}
}
2018-08-15 15:36:34 +00:00
tick_listeners();
2018-06-06 12:46:26 +00:00
return result;
}
2018-05-29 12:14:50 +00:00
int
run()
{
timespec t;
t.tv_sec = 0;
2018-08-10 03:51:38 +00:00
t.tv_nsec = 1000UL * EV_TICK_INTERVAL;
2018-05-29 12:14:50 +00:00
struct kevent events[1024];
int result;
do
{
result = kevent(kqueuefd, nullptr, 0, events, 1024, &t);
2018-05-29 12:14:50 +00:00
// result: 0 is a timeout
2018-06-06 12:46:26 +00:00
if(result > 0)
2018-05-29 12:14:50 +00:00
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].udata);
2018-08-01 03:32:13 +00:00
if(ev && ev->fd)
2018-05-29 12:14:50 +00:00
{
2018-08-01 03:32:13 +00:00
// printf("reading_ev [%x] fd[%d]\n", ev, ev->fd);
2018-08-10 03:51:38 +00:00
ev->read(readbuf, sizeof(readbuf));
2018-08-01 03:32:13 +00:00
}
else
{
llarp::LogWarn("kqueue event ", idx, " udata wasnt an ev_io");
2018-05-29 12:14:50 +00:00
}
++idx;
}
}
2018-08-15 15:36:34 +00:00
tick_listeners();
2018-05-29 12:14:50 +00:00
} while(result != -1);
return result;
}
int
udp_bind(const sockaddr* addr)
{
socklen_t slen;
llarp::LogDebug("kqueue bind affam", addr->sa_family);
2018-05-29 12:14:50 +00:00
switch(addr->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
#ifdef AF_LINK
#endif
#ifdef AF_PACKET
case AF_PACKET:
slen = sizeof(struct sockaddr_ll);
break;
#endif
default:
llarp::LogError("unsupported address family");
2018-05-29 12:14:50 +00:00
return -1;
}
int fd = socket(addr->sa_family, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("socket()");
return -1;
}
if(addr->sa_family == AF_INET6)
{
// enable dual stack explicitly
int dual = 1;
if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &dual, sizeof(dual)) == -1)
{
// failed
perror("setsockopt()");
close(fd);
return -1;
}
}
llarp::Addr a(*addr);
llarp::LogInfo("bind to ", a);
2018-06-04 13:08:35 +00:00
// FreeBSD handbook said to do this
2018-06-17 15:26:00 +00:00
if(addr->sa_family == AF_INET && INADDR_ANY)
2018-06-04 13:08:35 +00:00
a._addr4.sin_addr.s_addr = htonl(INADDR_ANY);
2018-05-29 12:14:50 +00:00
if(bind(fd, addr, slen) == -1)
{
perror("bind()");
close(fd);
return -1;
}
return fd;
}
bool
close_ev(llarp::ev_io* ev)
{
EV_SET(&change, ev->fd, EVFILT_READ, EV_DELETE, 0, 0, nullptr);
return kevent(kqueuefd, &change, 1, nullptr, 0, nullptr) == -1;
2018-05-29 12:14:50 +00:00
}
2018-08-15 15:45:07 +00:00
llarp::ev_io*
create_udp(llarp_udp_io* l, const sockaddr* src)
2018-05-29 12:14:50 +00:00
{
int fd = udp_bind(src);
if(fd == -1)
2018-08-15 15:45:07 +00:00
return nullptr;
2018-05-29 12:14:50 +00:00
llarp::udp_listener* listener = new llarp::udp_listener(fd, l);
2018-08-15 15:45:07 +00:00
udp_listeners.push_back(l);
l->impl = listener;
return listener;
}
2018-05-29 12:14:50 +00:00
2018-08-15 15:45:07 +00:00
bool
2018-08-16 15:31:32 +00:00
add_ev(llarp::ev_io* ev, bool write)
2018-08-15 15:45:07 +00:00
{
2018-08-16 15:31:32 +00:00
if(write)
EV_SET(&change, ev->fd, EVFILT_READ | EVFILT_WRITE, EV_ADD, 0, 0, ev);
else
EV_SET(&change, ev->fd, EVFILT_READ, EV_ADD, 0, 0, ev);
if(kevent(kqueuefd, &change, 1, nullptr, 0, nullptr) == -1)
2018-06-06 12:46:26 +00:00
{
2018-08-15 15:45:07 +00:00
delete ev;
2018-05-29 12:14:50 +00:00
return false;
}
return true;
}
bool
udp_close(llarp_udp_io* l)
{
bool ret = false;
auto listener = static_cast< llarp::udp_listener* >(l->impl);
if(listener)
{
2018-08-01 03:32:13 +00:00
// printf("Calling close_ev for [%x] fd[%d]\n", listener, listener->fd);
ret = close_ev(listener);
2018-05-29 12:14:50 +00:00
l->impl = nullptr;
2018-08-01 03:32:13 +00:00
delete listener;
udp_listeners.remove(l);
2018-05-29 12:14:50 +00:00
}
return ret;
}
void
stop()
{
if(kqueuefd != -1)
::close(kqueuefd);
kqueuefd = -1;
}
};
#endif