lokinet/test/dht/test_llarp_dht_bucket.cpp

371 lines
9.5 KiB
C++
Raw Normal View History

#include <dht/bucket.hpp>
#include <dht/key.hpp>
#include <dht/node.hpp>
#include <gtest/gtest.h>
using Key_t = llarp::dht::Key_t;
using Value_t = llarp::dht::RCNode;
using Bucket_t = llarp::dht::Bucket< Value_t >;
class TestDhtBucket : public ::testing::Test
{
public:
TestDhtBucket() : randInt(0)
{
us.Fill(16);
nodes = std::make_unique< Bucket_t >(us, [&]() { return randInt++; });
size_t numNodes = 10;
byte_t fill = 1;
while(numNodes)
{
Value_t n;
n.ID.Fill(fill);
nodes->PutNode(n);
--numNodes;
++fill;
}
}
uint64_t randInt;
llarp::dht::Key_t us;
std::unique_ptr< Bucket_t > nodes;
};
TEST_F(TestDhtBucket, simple_cycle)
{
// Empty the current bucket.
nodes->Clear();
// Create a simple value, and add it to the bucket.
Value_t val;
val.ID.Fill(1);
nodes->PutNode(val);
// Verify the value is in the bucket
ASSERT_TRUE(nodes->HasNode(val.ID));
ASSERT_EQ(1u, nodes->size());
// Verify after deletion, the value is no longer in the bucket
nodes->DelNode(val.ID);
ASSERT_FALSE(nodes->HasNode(val.ID));
// Verify deleting again succeeds;
nodes->DelNode(val.ID);
ASSERT_FALSE(nodes->HasNode(val.ID));
}
TEST_F(TestDhtBucket, get_random_node_excluding)
{
// Empty the current bucket.
nodes->Clear();
// We expect not to find anything
Key_t result;
std::set< Key_t > excludeSet;
ASSERT_FALSE(nodes->GetRandomNodeExcluding(result, excludeSet));
// Create a simple value.
Value_t val;
val.ID.Fill(1);
// Add the simple value to the exclude set
excludeSet.insert(val.ID);
ASSERT_FALSE(nodes->GetRandomNodeExcluding(result, excludeSet));
// Add the simple value to the bucket
nodes->PutNode(val);
ASSERT_FALSE(nodes->GetRandomNodeExcluding(result, excludeSet));
excludeSet.clear();
ASSERT_TRUE(nodes->GetRandomNodeExcluding(result, excludeSet));
ASSERT_EQ(val.ID, result);
// Add an element to the exclude set which isn't the bucket.
Key_t other;
other.Fill(0xff);
excludeSet.insert(other);
ASSERT_TRUE(nodes->GetRandomNodeExcluding(result, excludeSet));
ASSERT_EQ(val.ID, result);
// Add a node which is in both bucket and excludeSet
Value_t nextVal;
nextVal.ID.Fill(0xAA);
excludeSet.insert(nextVal.ID);
nodes->PutNode(nextVal);
ASSERT_TRUE(nodes->GetRandomNodeExcluding(result, excludeSet));
ASSERT_EQ(val.ID, result);
// Clear the excludeSet - we should still have 2 nodes in the bucket
excludeSet.clear();
randInt = 0;
ASSERT_TRUE(nodes->GetRandomNodeExcluding(result, excludeSet));
ASSERT_EQ(val.ID, result);
// Set the random value to be 1, we should get the other node.
randInt = 1;
ASSERT_TRUE(nodes->GetRandomNodeExcluding(result, excludeSet));
ASSERT_EQ(nextVal.ID, result);
// Set the random value to be 100, we should get the first node.
randInt = 100;
ASSERT_TRUE(nodes->GetRandomNodeExcluding(result, excludeSet));
ASSERT_EQ(val.ID, result);
}
TEST_F(TestDhtBucket, find_closest)
{
// Empty the current bucket.
nodes->Clear();
// We expect not to find anything
Key_t target;
target.Fill(0xF0);
Key_t result;
ASSERT_FALSE(nodes->FindClosest(target, result));
// Add a node to the bucket
Value_t first;
first.ID.Zero();
nodes->PutNode(first);
ASSERT_TRUE(nodes->FindClosest(target, result));
ASSERT_EQ(result, first.ID);
// Add another node to the bucket, closer to the target
Value_t second;
second.ID.Fill(0x10);
nodes->PutNode(second);
ASSERT_TRUE(nodes->FindClosest(target, result));
ASSERT_EQ(result, second.ID);
// Add a third node to the bucket, closer to the target
Value_t third;
third.ID.Fill(0x20);
nodes->PutNode(third);
ASSERT_TRUE(nodes->FindClosest(target, result));
ASSERT_EQ(result, third.ID);
// Add a fourth node to the bucket, greater than the target
Value_t fourth;
fourth.ID.Fill(0xF1);
nodes->PutNode(fourth);
ASSERT_TRUE(nodes->FindClosest(target, result));
ASSERT_EQ(result, fourth.ID);
// Add a fifth node to the bucket, equal to the target
Value_t fifth;
fifth.ID.Fill(0xF0);
nodes->PutNode(fifth);
ASSERT_TRUE(nodes->FindClosest(target, result));
ASSERT_EQ(result, fifth.ID);
}
TEST_F(TestDhtBucket, get_many_random)
{
// Empty the current bucket.
nodes->Clear();
// Verify behaviour with empty node set
std::set< Key_t > result;
ASSERT_FALSE(nodes->GetManyRandom(result, 0));
ASSERT_FALSE(nodes->GetManyRandom(result, 1));
// Add 5 nodes to the bucket
std::set< Value_t > curValues;
std::set< Key_t > curKeys;
for(byte_t i = 0x00; i < 0x05; ++i)
{
Value_t v;
v.ID.Fill(i);
ASSERT_TRUE(curKeys.insert(v.ID).second);
nodes->PutNode(v);
}
// Fetching more than the current size fails
ASSERT_EQ(5u, nodes->size());
ASSERT_FALSE(nodes->GetManyRandom(result, nodes->size() + 1));
// Fetching the current size succeeds
ASSERT_TRUE(nodes->GetManyRandom(result, nodes->size()));
ASSERT_EQ(curKeys, result);
// Fetching a subset succeeds.
// Note we hack this by "fixing" the random number generator
result.clear();
ASSERT_TRUE(nodes->GetManyRandom(result, 1u));
ASSERT_EQ(1u, result.size());
ASSERT_EQ(*curKeys.begin(), *result.begin());
randInt = 0;
result.clear();
ASSERT_TRUE(nodes->GetManyRandom(result, nodes->size() - 1));
ASSERT_EQ(nodes->size() - 1, result.size());
ASSERT_EQ(std::set< Key_t >(++curKeys.rbegin(), curKeys.rend()), result);
}
TEST_F(TestDhtBucket, find_close_excluding)
{
// Empty the current bucket.
nodes->Clear();
Key_t target;
target.Zero();
std::set< Key_t > exclude;
Key_t result;
// Empty node + exclude set fails
ASSERT_FALSE(nodes->FindCloseExcluding(target, result, exclude));
Value_t first;
first.ID.Fill(0xF0);
exclude.insert(first.ID);
// Empty nodes fails
ASSERT_FALSE(nodes->FindCloseExcluding(target, result, exclude));
// Nodes and exclude set match
nodes->PutNode(first);
ASSERT_FALSE(nodes->FindCloseExcluding(target, result, exclude));
// Exclude set empty
exclude.clear();
ASSERT_TRUE(nodes->FindCloseExcluding(target, result, exclude));
result = first.ID;
Value_t second;
second.ID.Fill(0x01);
nodes->PutNode(second);
ASSERT_TRUE(nodes->FindCloseExcluding(target, result, exclude));
result = second.ID;
exclude.insert(second.ID);
ASSERT_TRUE(nodes->FindCloseExcluding(target, result, exclude));
result = first.ID;
}
TEST_F(TestDhtBucket, find_many_near_excluding)
{
// Empty the current bucket.
nodes->Clear();
Key_t target;
target.Zero();
std::set< Key_t > exclude;
std::set< Key_t > result;
// Empty node + exclude set, with size 0 succeeds
ASSERT_TRUE(nodes->GetManyNearExcluding(target, result, 0, exclude));
ASSERT_EQ(0u, result.size());
// Empty node + exclude set fails
ASSERT_FALSE(nodes->GetManyNearExcluding(target, result, 1, exclude));
Value_t first;
first.ID.Fill(0xF0);
exclude.insert(first.ID);
// Empty nodes fails
ASSERT_FALSE(nodes->GetManyNearExcluding(target, result, 1, exclude));
// Nodes and exclude set match
nodes->PutNode(first);
ASSERT_FALSE(nodes->GetManyNearExcluding(target, result, 1, exclude));
// Single node succeeds
exclude.clear();
ASSERT_TRUE(nodes->GetManyNearExcluding(target, result, 1, exclude));
ASSERT_EQ(result, std::set< Key_t >({first.ID}));
// Trying to grab 2 nodes from a 1 node set fails
result.clear();
ASSERT_FALSE(nodes->GetManyNearExcluding(target, result, 2, exclude));
// two nodes finds closest
Value_t second;
second.ID.Fill(0x01);
nodes->PutNode(second);
result.clear();
ASSERT_TRUE(nodes->GetManyNearExcluding(target, result, 1, exclude));
ASSERT_EQ(result, std::set< Key_t >({second.ID}));
// 3 nodes finds 2 closest
Value_t third;
third.ID.Fill(0x02);
nodes->PutNode(third);
result.clear();
ASSERT_TRUE(nodes->GetManyNearExcluding(target, result, 2, exclude));
ASSERT_EQ(result, std::set< Key_t >({second.ID, third.ID}));
// 4 nodes, one in exclude set finds 2 closest
Value_t fourth;
fourth.ID.Fill(0x03);
nodes->PutNode(fourth);
exclude.insert(third.ID);
result.clear();
ASSERT_TRUE(nodes->GetManyNearExcluding(target, result, 2, exclude));
ASSERT_EQ(result, std::set< Key_t >({second.ID, fourth.ID}));
}
TEST_F(TestDhtBucket, TestBucketFindClosest)
{
llarp::dht::Key_t result;
llarp::dht::Key_t target;
target.Fill(5);
ASSERT_TRUE(nodes->FindClosest(target, result));
ASSERT_EQ(target, result);
const llarp::dht::Key_t oldResult = result;
target.Fill(0xf5);
ASSERT_TRUE(nodes->FindClosest(target, result));
ASSERT_EQ(oldResult, result);
2019-04-25 23:21:19 +00:00
}
TEST_F(TestDhtBucket, TestBucketRandomized_1000)
{
size_t moreNodes = 100;
while(moreNodes--)
{
llarp::dht::RCNode n;
n.ID.Fill(randInt);
randInt++;
nodes->PutNode(n);
}
const size_t count = 1000;
size_t left = count;
while(left--)
{
llarp::dht::Key_t result;
llarp::dht::Key_t target;
target.Randomize();
const llarp::dht::Key_t expect = target;
ASSERT_TRUE(nodes->FindClosest(target, result));
if(target == result)
{
ASSERT_GE(result ^ target, expect ^ target);
ASSERT_EQ(result ^ target, expect ^ target);
ASSERT_EQ(result ^ target, expect ^ target);
}
else
{
Key_t dist = result ^ target;
Key_t oldDist = expect ^ target;
ASSERT_NE(result ^ target, expect ^ target);
ASSERT_GE(result ^ target, expect ^ target)
<< "result=" << result << "expect=" << expect << std::endl
<< dist << ">=" << oldDist << "iteration=" << (count - left);
ASSERT_NE(result ^ target, expect ^ target);
}
}
2019-04-25 23:21:19 +00:00
}