You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lokinet/llarp/ev/ev_win32.hpp

775 lines
17 KiB
C++

#ifndef EV_WIN32_HPP
#define EV_WIN32_HPP
#include <buffer.h>
#include <ev/ev.hpp>
#include <util/logger.hpp>
#include <net.h>
#include <net.hpp>
#include <windows.h>
#include <process.h>
#include <cstdio>
// io packet for TUN read/write
struct asio_evt_pkt
{
OVERLAPPED pkt = {
0, 0, 0, 0, nullptr}; // must be first, since this is part of the IO call
bool write = false; // true, or false if read pkt
size_t sz; // should match the queued data size, if not try again?
void* buf; // must remain valid until we get notification; this is _supposed_
// to be zero-copy
};
struct win32_tun_io;
extern "C" DWORD FAR PASCAL
tun_ev_loop(void* unused);
6 years ago
// list of TUN listeners (useful for exits or other nodes with multiple TUNs)
std::list< win32_tun_io* > tun_listeners;
// a single event queue for the TUN interface
HANDLE tun_event_queue =
INVALID_HANDLE_VALUE; // we pass this to the event loop thread procedure
// upon setup
// we hand the kernel our thread handles to process completion events
HANDLE* kThreadPool;
void
begin_tun_loop(int nThreads)
{
kThreadPool = new HANDLE[nThreads];
for(int i = 0; i < nThreads; ++i)
{
kThreadPool[i] =
CreateThread(nullptr, 0, &tun_ev_loop, nullptr, 0, nullptr);
}
llarp::LogInfo("created ", nThreads, " threads for TUN event queue");
}
// A different kind of event loop,
// more suited for the native Windows NT
// event model
struct win32_tun_io
{
llarp_tun_io* t;
device* tunif;
byte_t readbuf[EV_READ_BUF_SZ] = {0};
struct WriteBuffer
{
llarp_time_t timestamp = 0;
size_t bufsz;
byte_t buf[EV_WRITE_BUF_SZ];
WriteBuffer() = default;
WriteBuffer(const byte_t* ptr, size_t sz)
{
if(sz <= sizeof(buf))
{
bufsz = sz;
memcpy(buf, ptr, bufsz);
}
else
bufsz = 0;
}
struct GetTime
{
llarp_time_t
operator()(const WriteBuffer& buf) const
{
return buf.timestamp;
}
};
struct GetNow
{
void* loop;
GetNow(void* l) : loop(l)
{
}
llarp_time_t
operator()() const
{
return llarp::time_now_ms();
}
};
struct PutTime
{
void* loop;
PutTime(void* l) : loop(l)
{
}
void
operator()(WriteBuffer& buf)
{
buf.timestamp = llarp::time_now_ms();
}
};
struct Compare
{
bool
operator()(const WriteBuffer& left, const WriteBuffer& right) const
{
return left.timestamp < right.timestamp;
}
};
};
using LossyWriteQueue_t =
llarp::util::CoDelQueue< WriteBuffer, WriteBuffer::GetTime,
WriteBuffer::PutTime, WriteBuffer::Compare,
WriteBuffer::GetNow, llarp::util::NullMutex,
llarp::util::NullLock, 5, 100, 128 >;
std::unique_ptr< LossyWriteQueue_t > m_LossyWriteQueue;
win32_tun_io(llarp_tun_io* tio) : t(tio), tunif(tuntap_init())
{
// This is not your normal everyday event loop, this is _advanced_ event
// handling :>
m_LossyWriteQueue = std::make_unique< LossyWriteQueue_t >("win32_tun_queue",
nullptr, nullptr);
};
bool
queue_write(const byte_t* buf, size_t sz)
{
if(m_LossyWriteQueue)
{
m_LossyWriteQueue->Emplace(buf, sz);
flush_write();
return true;
}
else
return false;
}
bool
setup()
{
if(tuntap_start(tunif, TUNTAP_MODE_TUNNEL, 0) == -1)
{
llarp::LogWarn("failed to start interface");
return false;
}
if(tuntap_set_ip(tunif, t->ifaddr, t->ifaddr, t->netmask) == -1)
{
llarp::LogWarn("failed to set ip");
return false;
}
if(tuntap_up(tunif) == -1)
{
char ebuf[1024];
int err = GetLastError();
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, LANG_NEUTRAL,
ebuf, 1024, nullptr);
llarp::LogWarn("failed to put interface up: ", ebuf);
return false;
}
if(tunif->tun_fd == INVALID_HANDLE_VALUE)
return false;
return true;
}
// first TUN device gets to set up the event port
bool
add_ev()
{
if(tun_event_queue == INVALID_HANDLE_VALUE)
{
SYSTEM_INFO sys_info;
GetSystemInfo(&sys_info);
unsigned long numCPU = sys_info.dwNumberOfProcessors;
// let the system handle 2x the number of CPUs or hardware
// threads
tun_event_queue = CreateIoCompletionPort(tunif->tun_fd, nullptr,
(ULONG_PTR)this, numCPU * 2);
begin_tun_loop(numCPU * 2);
}
else
CreateIoCompletionPort(tunif->tun_fd, tun_event_queue, (ULONG_PTR)this,
0);
// we're already non-blocking
// add to list
tun_listeners.push_back(this);
read(readbuf, 4096);
return true;
}
// places data in event queue for kernel to process
void
do_write(void* data, size_t sz)
{
llarp::LogInfo("writing some data");
asio_evt_pkt* pkt = new asio_evt_pkt;
pkt->buf = data;
pkt->sz = sz;
pkt->write = true;
memset(&pkt->pkt, '\0', sizeof(pkt->pkt));
WriteFile(tunif->tun_fd, data, sz, nullptr, &pkt->pkt);
}
// we call this one when we get a packet in the event port
// which then kicks off another write
void
flush_write()
{
if(t->before_write)
t->before_write(t);
m_LossyWriteQueue->Process([&](WriteBuffer& buffer) {
do_write(buffer.buf, buffer.bufsz);
// we are NEVER going to block
// because Windows NT implements true async io
});
}
void
read(byte_t* buf, size_t sz)
{
asio_evt_pkt* pkt = new asio_evt_pkt;
pkt->buf = buf;
memset(&pkt->pkt, '\0', sizeof(OVERLAPPED));
pkt->sz = sz;
pkt->write = false;
ReadFile(tunif->tun_fd, buf, sz, nullptr, &pkt->pkt);
}
~win32_tun_io()
{
CancelIo(tunif->tun_fd);
if(tunif->tun_fd)
tuntap_destroy(tunif);
}
};
// and now the event loop itself
extern "C" DWORD FAR PASCAL
tun_ev_loop(void* unused)
{
UNREFERENCED_PARAMETER(unused);
DWORD size = 0;
OVERLAPPED* ovl = nullptr;
ULONG_PTR listener = 0;
asio_evt_pkt* pkt = nullptr;
BOOL alert;
while(true)
{
alert =
GetQueuedCompletionStatus(tun_event_queue, &size, &listener, &ovl, 100);
if(!alert)
continue; // let's go at it once more
if(listener == (ULONG_PTR)~0)
break;
// if we're here, then we got something interesting :>
pkt = (asio_evt_pkt*)ovl;
win32_tun_io* ev = reinterpret_cast< win32_tun_io* >(listener);
if(!pkt->write)
{
// llarp::LogInfo("read tun ", size, " bytes, pass to handler");
if(ev->t->recvpkt)
ev->t->recvpkt(ev->t, llarp::InitBuffer(pkt->buf, size));
6 years ago
ev->flush_write();
ev->read(ev->readbuf, sizeof(ev->readbuf));
}
else
{
llarp::LogInfo("write ", size, " bytes to tunnel interface");
// ok let's queue another read!
ev->read(ev->readbuf, sizeof(ev->readbuf));
}
delete pkt; // don't leak
}
llarp::LogInfo("exit TUN event loop thread from system managed thread pool");
return 0;
}
void
exit_tun_loop()
{
// if we get all-ones in the queue, thread exits, and we clean up
PostQueuedCompletionStatus(tun_event_queue, 0, ~0, nullptr);
// kill the kernel's thread pool
int i = (&kThreadPool)[1] - kThreadPool; // get the size of our thread pool
llarp::LogInfo("closing ", i, " threads");
WaitForMultipleObjects(i, kThreadPool, TRUE, INFINITE);
for(int j = 0; j < i; ++j)
CloseHandle(kThreadPool[j]);
delete[] kThreadPool;
// the IOCP refcount is decreased each time an associated fd
// is closed
// the fds are closed in their destructors
// once we get to zero, we can safely close the event port
auto itr = tun_listeners.begin();
while(itr != tun_listeners.end())
{
delete(*itr);
itr = tun_listeners.erase(itr);
}
CloseHandle(tun_event_queue);
}
namespace llarp
{
int
tcp_conn::read(byte_t* buf, size_t sz)
{
if(_shouldClose)
return -1;
ssize_t amount = uread(fd, (char*)buf, sz);
if(amount > 0)
{
if(tcp.read)
tcp.read(&tcp, llarp::InitBuffer(buf, amount));
}
else
{
// error
_shouldClose = true;
return -1;
}
return 0;
}
void
tcp_conn::flush_write()
{
connected();
ev_io::flush_write();
}
ssize_t
tcp_conn::do_write(void* buf, size_t sz)
{
if(_shouldClose)
return -1;
return uwrite(fd, (char*)buf, sz);
}
void
tcp_conn::connect()
{
socklen_t slen = sizeof(sockaddr_in);
if(_addr.ss_family == AF_UNIX)
slen = sizeof(sockaddr_un);
else if(_addr.ss_family == AF_INET6)
slen = sizeof(sockaddr_in6);
int result = ::connect(fd, (const sockaddr*)&_addr, slen);
if(result == 0)
{
llarp::LogDebug("connected immedidately");
connected();
}
else if(WSAGetLastError() == WSAEINPROGRESS)
{
// in progress
llarp::LogDebug("connect in progress");
WSASetLastError(0);
return;
}
else if(_conn->error)
{
// wtf?
char ebuf[1024];
int err = WSAGetLastError();
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, LANG_NEUTRAL,
ebuf, 1024, nullptr);
llarp::LogError("error connecting: ", ebuf);
_conn->error(_conn);
}
}
int
tcp_serv::read(byte_t*, size_t)
{
int new_fd = ::accept(fd, nullptr, nullptr);
if(new_fd == -1)
{
char ebuf[1024];
int err = WSAGetLastError();
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, LANG_NEUTRAL,
ebuf, 1024, nullptr);
llarp::LogError("failed to accept on ", fd, ":", ebuf);
return -1;
}
// build handler
llarp::tcp_conn* connimpl = new tcp_conn(loop, new_fd);
if(loop->add_ev(connimpl, true))
{
// call callback
if(tcp->accepted)
tcp->accepted(tcp, &connimpl->tcp);
return 0;
}
// cleanup error
delete connimpl;
return -1;
}
struct udp_listener : public ev_io
{
llarp_udp_io* udp;
udp_listener(int fd, llarp_udp_io* u) : ev_io(fd), udp(u){};
~udp_listener()
{
}
bool
tick()
{
if(udp->tick)
udp->tick(udp);
return true;
}
int
read(byte_t* buf, size_t sz)
{
llarp_buffer_t b;
b.base = buf;
b.cur = b.base;
sockaddr_in6 src;
socklen_t slen = sizeof(sockaddr_in6);
sockaddr* addr = (sockaddr*)&src;
ssize_t ret = ::recvfrom(fd, (char*)b.base, sz, 0, addr, &slen);
if(ret < 0)
return -1;
if(static_cast< size_t >(ret) > sz)
return -1;
b.sz = ret;
udp->recvfrom(udp, addr, b);
return 0;
}
int
sendto(const sockaddr* to, const void* data, size_t sz)
{
socklen_t slen;
switch(to->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
default:
return -1;
}
ssize_t sent = ::sendto(fd, (char*)data, sz, 0, to, slen);
if(sent == -1)
{
char ebuf[1024];
int err = WSAGetLastError();
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, LANG_NEUTRAL,
ebuf, 1024, nullptr);
llarp::LogWarn(ebuf);
}
return sent;
}
};
}; // namespace llarp
struct llarp_win32_loop : public llarp_ev_loop
{
upoll_t* upollfd;
llarp_win32_loop() : upollfd(nullptr)
{
}
bool
tcp_connect(struct llarp_tcp_connecter* tcp, const sockaddr* remoteaddr)
{
// create socket
int fd = usocket(remoteaddr->sa_family, SOCK_STREAM, 0);
if(fd == -1)
return false;
llarp::tcp_conn* conn = new llarp::tcp_conn(this, fd, remoteaddr, tcp);
add_ev(conn, true);
conn->connect();
return true;
}
llarp::ev_io*
bind_tcp(llarp_tcp_acceptor* tcp, const sockaddr* bindaddr)
{
int fd = usocket(bindaddr->sa_family, SOCK_STREAM, 0);
if(fd == -1)
return nullptr;
socklen_t sz = sizeof(sockaddr_in);
if(bindaddr->sa_family == AF_INET6)
{
sz = sizeof(sockaddr_in6);
}
// keep. inexplicably, windows now has unix domain sockets
// for now, use the ID numbers directly until this comes out of
// beta
else if(bindaddr->sa_family == AF_UNIX)
sz = sizeof(sockaddr_un);
if(::bind(fd, bindaddr, sz) == -1)
{
uclose(fd);
return nullptr;
}
if(ulisten(fd, 5) == -1)
{
uclose(fd);
return nullptr;
}
return new llarp::tcp_serv(this, fd, tcp);
}
virtual bool
udp_listen(llarp_udp_io* l, const sockaddr* src)
{
auto ev = create_udp(l, src);
if(ev)
l->fd = ev->fd;
return ev && add_ev(ev, false);
}
~llarp_win32_loop()
{
if(upollfd)
upoll_destroy(upollfd);
}
bool
running() const
{
return (upollfd != nullptr);
}
bool
init()
{
if(!upollfd)
upollfd = upoll_create(1);
return upollfd != nullptr;
}
6 years ago
// OK, the event loop, as it exists now, will _only_
// work on sockets (and not very efficiently at that).
int
tick(int ms)
{
upoll_event_t events[1024];
int result;
result = upoll_wait(upollfd, events, 1024, ms);
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].data.ptr);
if(ev)
{
if(events[idx].events & UPOLLERR)
{
ev->error();
}
else
{
if(events[idx].events & UPOLLIN)
{
ev->read(readbuf, sizeof(readbuf));
}
if(events[idx].events & UPOLLOUT)
{
ev->flush_write();
}
}
}
++idx;
}
}
if(result != -1)
tick_listeners();
return result;
}
int
run()
{
upoll_event_t events[1024];
int result;
do
6 years ago
{
result = upoll_wait(upollfd, events, 1024, EV_TICK_INTERVAL);
if(result > 0)
{
int idx = 0;
while(idx < result)
{
llarp::ev_io* ev = static_cast< llarp::ev_io* >(events[idx].data.ptr);
if(ev)
{
if(events[idx].events & UPOLLERR)
{
ev->error();
}
else
{
if(events[idx].events & UPOLLIN)
{
ev->read(readbuf, sizeof(readbuf));
}
if(events[idx].events & UPOLLOUT)
{
ev->flush_write();
}
}
}
++idx;
}
}
if(result != -1)
tick_listeners();
} while(upollfd);
return result;
}
int
udp_bind(const sockaddr* addr)
{
socklen_t slen;
switch(addr->sa_family)
{
case AF_INET:
slen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
slen = sizeof(struct sockaddr_in6);
break;
default:
return -1;
}
int fd = usocket(addr->sa_family, SOCK_DGRAM, 0);
if(fd == -1)
{
perror("usocket()");
return -1;
}
if(addr->sa_family == AF_INET6)
{
// enable dual stack explicitly
int dual = 1;
if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (char*)&dual, sizeof(dual))
== -1)
{
// failed
perror("setsockopt()");
close(fd);
return -1;
}
}
llarp::Addr a(*addr);
llarp::LogDebug("bind to ", a);
if(bind(fd, addr, slen) == -1)
{
perror("bind()");
close(fd);
return -1;
}
return fd;
}
bool
close_ev(llarp::ev_io* ev)
{
return upoll_ctl(upollfd, UPOLL_CTL_DEL, ev->fd, nullptr) != -1;
}
// no tunnels here
llarp::ev_io*
create_tun(llarp_tun_io* tun)
{
UNREFERENCED_PARAMETER(tun);
return nullptr;
}
llarp::ev_io*
create_udp(llarp_udp_io* l, const sockaddr* src)
{
int fd = udp_bind(src);
if(fd == -1)
return nullptr;
llarp::ev_io* listener = new llarp::udp_listener(fd, l);
l->impl = listener;
return listener;
}
bool
add_ev(llarp::ev_io* e, bool write)
{
upoll_event_t ev;
ev.data.ptr = e;
ev.events = UPOLLIN | UPOLLERR;
if(write)
ev.events |= UPOLLOUT;
if(upoll_ctl(upollfd, UPOLL_CTL_ADD, e->fd, &ev) == -1)
{
delete e;
return false;
}
handlers.emplace_back(e);
return true;
}
bool
udp_close(llarp_udp_io* l)
{
bool ret = false;
llarp::udp_listener* listener =
static_cast< llarp::udp_listener* >(l->impl);
if(listener)
{
close_ev(listener);
// remove handler
auto itr = handlers.begin();
while(itr != handlers.end())
{
if(itr->get() == listener)
itr = handlers.erase(itr);
else
++itr;
}
l->impl = nullptr;
ret = true;
}
return ret;
}
void
stop()
{
// do nothing
}
};
#endif