lokinet/llarp/util/metrics_core.cpp

911 lines
25 KiB
C++
Raw Normal View History

2019-02-27 21:46:23 +00:00
#include <util/metrics_core.hpp>
#include <iostream>
namespace llarp
{
namespace metrics
{
Record
IntCollector::loadAndClear()
{
size_t count;
uint64_t total;
int min;
int max;
{
absl::WriterMutexLock l(&m_mutex);
count = m_count;
total = m_total;
min = m_min;
max = m_max;
m_count = 0;
m_total = 0;
m_min = DEFAULT_MIN;
m_max = DEFAULT_MAX;
}
return {m_id, count, static_cast< double >(total),
(min == DEFAULT_MIN) ? Record::DEFAULT_MIN
: static_cast< double >(min),
(max == DEFAULT_MAX) ? Record::DEFAULT_MAX
: static_cast< double >(max)};
}
Record
IntCollector::load()
{
size_t count;
int64_t total;
int min;
int max;
{
absl::ReaderMutexLock l(&m_mutex);
count = m_count;
total = m_total;
min = m_min;
max = m_max;
}
return {m_id, count, static_cast< double >(total),
(min == DEFAULT_MIN) ? Record::DEFAULT_MIN : min,
(max == DEFAULT_MAX) ? Record::DEFAULT_MAX : max};
}
std::tuple< Id, bool >
Registry::insert(const char *category, const char *name)
{
// avoid life time issues, putting strings in the stringmem set
const char *cStr = m_stringmem.emplace(category).first->c_str();
const char *nStr = m_stringmem.emplace(name).first->c_str();
NamedCategory namedCategory(cStr, nStr);
const auto it = m_metrics.find(namedCategory);
if(it != m_metrics.end())
{
return std::make_tuple(Id(it->second.get()), false);
}
auto cIt = m_categories.find(cStr);
if(cIt == m_categories.end())
{
auto ptr = std::make_shared< Category >(cStr, m_defaultEnabled);
cIt = m_categories.emplace(cStr, ptr).first;
}
const auto mPtr =
std::make_shared< Description >(cIt->second.get(), nStr);
m_metrics.emplace(namedCategory, mPtr);
return {Id(mPtr.get()), true};
}
Id
Registry::add(const char *category, const char *name)
{
absl::WriterMutexLock l(&m_mutex);
auto result = insert(category, name);
return std::get< 1 >(result) ? std::get< 0 >(result) : Id();
}
Id
Registry::get(const char *category, const char *name)
{
Id result = findId(category, name);
if(result)
{
return result;
}
absl::WriterMutexLock l(&m_mutex);
return std::get< 0 >(insert(category, name));
}
const Category *
Registry::add(const char *category)
{
absl::WriterMutexLock l(&m_mutex);
const char *cStr = m_stringmem.emplace(category).first->c_str();
auto it = m_categories.find(cStr);
if(it == m_categories.end())
{
auto ptr = std::make_shared< Category >(cStr, m_defaultEnabled);
it = m_categories.emplace(cStr, ptr).first;
return it->second.get();
}
return nullptr;
}
const Category *
Registry::get(const char *category)
{
const Category *cPtr = findCategory(category);
if(cPtr)
{
return cPtr;
}
absl::WriterMutexLock l(&m_mutex);
const char *cStr = m_stringmem.emplace(category).first->c_str();
auto it = m_categories.find(cStr);
if(it == m_categories.end())
{
auto ptr = std::make_shared< Category >(cStr, m_defaultEnabled);
it = m_categories.emplace(cStr, ptr).first;
}
return it->second.get();
}
void
Registry::enable(const Category *category, bool value)
{
absl::WriterMutexLock l(&m_mutex);
const_cast< Category * >(category)->enabled(value);
}
void
Registry::enableAll(bool value)
{
absl::WriterMutexLock l(&m_mutex);
if(value == m_defaultEnabled)
{
return;
}
m_defaultEnabled = value;
std::for_each(m_categories.begin(), m_categories.end(),
[&](auto &x) { x.second->enabled(value); });
}
void
Registry::registerContainer(const Category *category,
CategoryContainer &container)
{
absl::WriterMutexLock l(&m_mutex);
if(container.m_category == nullptr)
{
const_cast< Category * >(category)->registerContainer(&container);
}
}
void
Registry::publicationType(const Id &id, Publication::Type type)
{
const_cast< Description * >(id.description())->type(type);
}
void
Registry::setFormat(const Id &id, const Format &format)
{
Description *description = const_cast< Description * >(id.description());
absl::WriterMutexLock l(&m_mutex);
auto fmtPtr = std::make_shared< Format >(format);
for(byte_t i = 0; i < Publication::MaxSize; ++i)
{
auto type = static_cast< Publication::Type >(i);
const FormatSpec *spec = format.specFor(type);
if(spec != nullptr)
{
const char *fmt = m_stringmem.emplace(spec->m_format).first->c_str();
fmtPtr->setSpec(type, FormatSpec(spec->m_scale, fmt));
}
}
description->format(fmtPtr);
}
const Category *
Registry::findCategory(const char *category) const
{
absl::ReaderMutexLock l(&m_mutex);
auto it = m_categories.find(category);
return it == m_categories.end() ? nullptr : it->second.get();
}
Id
Registry::findId(const char *category, const char *name) const
{
absl::ReaderMutexLock l(&m_mutex);
auto it = m_metrics.find(std::make_tuple(category, name));
return it == m_metrics.end() ? Id() : Id(it->second.get());
}
std::vector< const Category * >
Registry::getAll() const
{
absl::ReaderMutexLock l(&m_mutex);
std::vector< const Category * > result;
result.reserve(m_categories.size());
std::transform(m_categories.begin(), m_categories.end(),
std::back_inserter(result),
[](const auto &x) { return x.second.get(); });
return result;
}
MetricCollectors &
CollectorRepo::getCollectors(const Id &id)
{
auto it = m_collectors.find(id);
if(it == m_collectors.end())
{
assert(id.valid());
const Category *cat = id.category();
auto ptr = std::make_shared< MetricCollectors >(id);
auto &vec = m_categories[cat];
vec.reserve(vec.size() + 1);
it = m_collectors.emplace(id, ptr).first;
vec.push_back(ptr.get());
}
return *it->second.get();
}
std::vector< Record >
CollectorRepo::collectAndClear(const Category *category)
{
absl::WriterMutexLock l(&m_mutex);
std::vector< Record > result;
auto it = m_categories.find(category);
if(it != m_categories.end())
{
auto &collectors = it->second;
result.reserve(collectors.size());
std::transform(
collectors.begin(), collectors.end(), std::back_inserter(result),
[](MetricCollectors *c) { return c->combineAndClear(); });
}
return result;
}
std::vector< Record >
CollectorRepo::collect(const Category *category)
{
absl::WriterMutexLock l(&m_mutex);
std::vector< Record > result;
auto it = m_categories.find(category);
if(it != m_categories.end())
{
auto &collectors = it->second;
result.reserve(collectors.size());
std::transform(collectors.begin(), collectors.end(),
std::back_inserter(result),
[](MetricCollectors *c) { return c->combine(); });
}
return result;
}
DoubleCollector *
CollectorRepo::defaultDoubleCollector(const Id &id)
{
{
absl::ReaderMutexLock l(&m_mutex);
auto it = m_collectors.find(id);
if(it != m_collectors.end())
{
return it->second->doubleCollectors().defaultCollector();
}
}
{
absl::WriterMutexLock l(&m_mutex);
return getCollectors(id).doubleCollectors().defaultCollector();
}
}
IntCollector *
CollectorRepo::defaultIntCollector(const Id &id)
{
{
absl::ReaderMutexLock l(&m_mutex);
auto it = m_collectors.find(id);
if(it != m_collectors.end())
{
return it->second->intCollectors().defaultCollector();
}
}
{
absl::WriterMutexLock l(&m_mutex);
return getCollectors(id).intCollectors().defaultCollector();
}
}
std::pair< std::vector< std::shared_ptr< DoubleCollector > >,
std::vector< std::shared_ptr< IntCollector > > >
CollectorRepo::allCollectors(const Id &id)
{
absl::ReaderMutexLock l(&m_mutex);
auto it = m_collectors.find(id);
if(it == m_collectors.end())
{
return {};
}
return {it->second->doubleCollectors().collectors(),
it->second->intCollectors().collectors()};
}
struct PublisherHelper
{
using SampleCache = std::map< std::shared_ptr< Publisher >, Sample >;
static void
updateSampleCache(SampleCache &cache,
const std::shared_ptr< Publisher > &publisher,
const SampleGroup &sampleGroup,
const absl::Time &timeStamp)
{
SampleCache::iterator it = cache.find(publisher);
if(it == cache.end())
{
Sample newSample;
newSample.sampleTime(timeStamp);
it = cache.emplace(publisher, newSample).first;
}
it->second.pushGroup(sampleGroup);
}
static std::pair< std::vector< Record >, absl::Duration >
collect(Manager &manager, const Category *category,
const absl::Duration &now, bool clear)
EXCLUSIVE_LOCKS_REQUIRED(manager.m_mutex)
{
using Callback = Manager::RecordCallback;
using CallbackVector = std::vector< const Callback * >;
using RegistryIterator = CallbackRegistry::iterator;
CallbackVector callbacks;
RegistryIterator begin = manager.m_callbacks.lowerBound(category);
RegistryIterator end = manager.m_callbacks.upperBound(category);
std::vector< Record > result;
std::for_each(begin, end, [&](const auto &x) {
std::vector< Record > tmp = (x.second)(clear);
result.insert(result.end(), tmp.begin(), tmp.end());
});
// Collect records from the repo.
if(clear)
{
std::vector< Record > tmp = manager.m_repo.collectAndClear(category);
result.insert(result.end(), tmp.begin(), tmp.end());
}
else
{
std::vector< Record > tmp = manager.m_repo.collect(category);
result.insert(result.end(), tmp.begin(), tmp.end());
}
// Get the time since last reset, and clear if needed.
Manager::ResetTimes::iterator it = manager.m_resetTimes.find(category);
if(it == manager.m_resetTimes.end())
{
if(clear)
{
manager.m_resetTimes.emplace(category, now);
}
return {result, now - manager.m_createTime};
}
else
{
auto tmp = now - it->second;
if(clear)
{
it->second = now;
}
return {result, tmp};
}
}
template < typename CategoryIterator >
static void
publish(Manager &manager, const CategoryIterator &categoriesBegin,
const CategoryIterator &categoriesEnd, bool clear)
{
if(categoriesBegin == categoriesEnd)
{
return;
}
using RecordBuffer =
std::vector< std::shared_ptr< std::vector< Record > > >;
RecordBuffer recordBuffer;
SampleCache sampleCache;
absl::Time timeStamp = absl::Now();
absl::Duration now = absl::Now() - absl::UnixEpoch();
{
// 1.
absl::WriterMutexLock publishGuard(&manager.m_publishLock);
// 2.
absl::WriterMutexLock propertiesGuard(&manager.m_mutex);
// Build the 'sampleCache' by iterating over the categories and
// collecting records for those categories.
for(CategoryIterator catIt = categoriesBegin; catIt != categoriesEnd;
++catIt)
{
if(!(*catIt)->enabled())
{
continue;
}
// Collect the metrics.
auto result = collect(manager, *catIt, now, clear);
// If their are no collected records then this category can be
// ignored.
if(result.first.empty())
{
continue;
}
if(result.second == absl::Duration())
{
std::cerr << "Invalid elapsed time interval of 0 for "
"published metrics.";
result.second += absl::Nanoseconds(1);
}
// Append the collected records to the buffer of records.
auto records =
std::make_shared< std::vector< Record > >(result.first);
recordBuffer.push_back(records);
SampleGroup sampleGroup(absl::Span< Record >(*records),
result.second);
std::for_each(
manager.m_publishers.globalBegin(),
manager.m_publishers.globalEnd(), [&](const auto &ptr) {
updateSampleCache(sampleCache, ptr, sampleGroup, timeStamp);
});
std::for_each(manager.m_publishers.lowerBound(*catIt),
manager.m_publishers.upperBound(*catIt),
[&](const auto &val) {
updateSampleCache(sampleCache, val.second,
sampleGroup, timeStamp);
});
}
}
for(auto &entry : sampleCache)
{
Publisher *publisher = entry.first.get();
Sample &sample = entry.second;
publisher->publish(sample);
}
}
};
Sample
Manager::collectSample(std::vector< Record > &records,
absl::Span< const Category * > categories,
bool clear)
{
absl::Time timeStamp = absl::Now();
absl::Duration now = timeStamp - absl::UnixEpoch();
Sample sample;
sample.sampleTime(timeStamp);
// Use a tuple to hold 'references' to the collected records
using SampleDescription = std::tuple< size_t, size_t, absl::Duration >;
std::vector< SampleDescription > samples;
samples.reserve(categories.size());
// 1
absl::WriterMutexLock publishGuard(&m_publishLock);
// 2
absl::WriterMutexLock propertiesGuard(&m_mutex);
for(const Category *const category : categories)
{
if(!category->enabled())
{
continue;
}
size_t beginIndex = records.size();
// Collect the metrics.
std::vector< Record > catRecords;
absl::Duration elapsedTime;
std::tie(catRecords, elapsedTime) =
PublisherHelper::collect(*this, category, now, clear);
records.insert(records.end(), catRecords.begin(), catRecords.end());
size_t size = records.size() - beginIndex;
// If there are no collected records then this category can be ignored.
if(size != 0)
{
samples.emplace_back(beginIndex, size, elapsedTime);
}
}
// Now that we have all the records, we can build our sample
for(const SampleDescription &s : samples)
{
sample.pushGroup(&records[std::get< 0 >(s)], std::get< 1 >(s),
std::get< 2 >(s));
}
return sample;
}
void
Manager::publish(absl::Span< const Category * > categories, bool clear)
{
PublisherHelper::publish(*this, categories.begin(), categories.end(),
clear);
}
void
Manager::publish(const std::set< const Category * > &categories, bool clear)
{
PublisherHelper::publish(*this, categories.begin(), categories.end(),
clear);
}
Manager *DefaultManager::m_manager = nullptr;
struct PublisherSchedulerData
{
util::Mutex m_mutex;
thread::Scheduler::Handle m_handle;
std::set< const Category * > m_categories;
bool m_default;
std::set< const Category * > m_nonDefaultCategories;
PublisherSchedulerData()
: m_handle(thread::Scheduler::INVALID_HANDLE), m_default(false)
{
}
};
// Reverts a publisher scheduler back to its default state
class PublisherSchedulerGuard
{
PublisherScheduler *m_scheduler;
public:
PublisherSchedulerGuard(PublisherScheduler *scheduler)
: m_scheduler(scheduler)
{
}
~PublisherSchedulerGuard()
{
if(m_scheduler != nullptr)
{
for(auto &repeat : m_scheduler->m_repeaters)
{
if(repeat.second->m_handle != thread::Scheduler::INVALID_HANDLE)
{
m_scheduler->m_scheduler.cancelRepeat(repeat.second->m_handle);
}
}
m_scheduler->m_defaultInterval = absl::Duration();
m_scheduler->m_repeaters.clear();
m_scheduler->m_categories.clear();
}
}
void
release()
{
m_scheduler = nullptr;
}
};
void
PublisherScheduler::publish(
const std::shared_ptr< PublisherSchedulerData > &data) const
{
util::Lock l(&data->m_mutex);
if(data->m_default)
{
m_manager->publishAllExcluding(data->m_nonDefaultCategories);
}
else if(!data->m_categories.empty())
{
m_manager->publish(data->m_categories);
}
}
void
PublisherScheduler::cancel(Categories::iterator it)
{
assert(it != m_categories.end());
auto repeatIt = m_repeaters.find(it->second);
assert(repeatIt != m_repeaters.end());
const Category *category = it->first;
m_categories.erase(it);
auto data = repeatIt->second;
{
util::Lock l(&data->m_mutex);
assert(data->m_categories.find(category) != data->m_categories.end());
data->m_categories.erase(category);
}
if(!data->m_default)
{
if(data->m_categories.empty())
{
m_scheduler.cancelRepeat(data->m_handle);
m_repeaters.erase(repeatIt);
}
if(m_defaultInterval != absl::Duration())
{
auto defaultIntervalIt = m_repeaters.find(m_defaultInterval);
assert(defaultIntervalIt != m_repeaters.end());
auto &defaultRepeater = defaultIntervalIt->second;
util::Lock l(&defaultRepeater->m_mutex);
defaultRepeater->m_nonDefaultCategories.erase(category);
}
}
}
bool
PublisherScheduler::cancelDefault()
{
if(m_defaultInterval == absl::Duration())
{
return false;
}
absl::Duration interval = m_defaultInterval;
m_defaultInterval = absl::Duration();
auto repeatIt = m_repeaters.find(interval);
assert(repeatIt != m_repeaters.end());
auto data = repeatIt->second;
if(data->m_categories.empty())
{
assert(data->m_handle != thread::Scheduler::INVALID_HANDLE);
m_scheduler.cancelRepeat(data->m_handle);
m_repeaters.erase(repeatIt);
}
else
{
util::Lock l(&data->m_mutex);
data->m_default = false;
data->m_nonDefaultCategories.clear();
}
return true;
}
void
PublisherScheduler::schedule(const Category *category,
absl::Duration interval)
{
assert(absl::Seconds(0) < interval);
util::Lock l(&m_mutex);
auto catIt = m_categories.find(category);
if(catIt != m_categories.end())
{
if(catIt->second == interval)
{
return;
}
cancel(catIt);
}
// Make a guard, so if something throws, the scheduler is reset to a
// somewhat "sane" state (no metrics).
PublisherSchedulerGuard guard(this);
m_categories.emplace(category, interval);
auto repeatIt = m_repeaters.find(interval);
std::shared_ptr< PublisherSchedulerData > data;
// Create a new 'ClockData' object if one does not exist for the
// 'interval', otherwise update the existing 'data'.
if(repeatIt == m_repeaters.end())
{
data = std::make_shared< PublisherSchedulerData >();
data->m_categories.insert(category);
m_repeaters.emplace(interval, data);
util::Lock lock(&data->m_mutex);
data->m_handle = m_scheduler.scheduleRepeat(
interval, std::bind(&PublisherScheduler::publish, this, data));
}
else
{
data = repeatIt->second;
util::Lock lock(&data->m_mutex);
data->m_categories.insert(category);
}
// If this isn't being added to the default schedule, then add to the set
// of non-default categories in the default schedule.
if(!data->m_default && m_defaultInterval != absl::Duration())
{
auto defaultIntervalIt = m_repeaters.find(m_defaultInterval);
assert(defaultIntervalIt != m_repeaters.end());
auto &defaultInterval = defaultIntervalIt->second;
util::Lock lock(&defaultInterval->m_mutex);
defaultInterval->m_nonDefaultCategories.insert(category);
}
guard.release();
}
void
PublisherScheduler::setDefault(absl::Duration interval)
{
assert(absl::Seconds(0) < interval);
util::Lock l(&m_mutex);
// If its already this interval, return early.
if(interval == m_defaultInterval)
{
return;
}
cancelDefault();
m_defaultInterval = interval;
// Make a guard, so if something throws, the scheduler is reset to a
// somewhat "sane" state (no metrics).
PublisherSchedulerGuard guard(this);
std::shared_ptr< PublisherSchedulerData > data;
auto repeatIt = m_repeaters.find(interval);
if(repeatIt == m_repeaters.end())
{
data = std::make_shared< PublisherSchedulerData >();
m_repeaters.emplace(interval, data);
}
else
{
data = repeatIt->second;
}
util::Lock lock(&data->m_mutex);
data->m_default = true;
Categories::iterator cIt = m_categories.begin();
for(; cIt != m_categories.end(); ++cIt)
{
if(cIt->second != interval)
{
data->m_nonDefaultCategories.insert(cIt->first);
}
}
if(data->m_handle == thread::Scheduler::INVALID_HANDLE)
{
data->m_handle = m_scheduler.scheduleRepeat(
interval, std::bind(&PublisherScheduler::publish, this, data));
}
guard.release();
}
bool
PublisherScheduler::cancel(const Category *category)
{
util::Lock l(&m_mutex);
Categories::iterator it = m_categories.find(category);
if(it == m_categories.end())
{
// This category has no specific schedule.
return false;
}
cancel(it);
return true;
}
bool
PublisherScheduler::clearDefault()
{
util::Lock l(&m_mutex);
return cancelDefault();
}
void
PublisherScheduler::cancelAll()
{
util::Lock l(&m_mutex);
for(auto &repeat : m_repeaters)
{
m_scheduler.cancelRepeat(repeat.second->m_handle, true);
}
m_defaultInterval = absl::Duration();
m_repeaters.clear();
m_categories.clear();
}
absl::optional< absl::Duration >
PublisherScheduler::find(const Category *category) const
{
util::Lock l(&m_mutex);
auto it = m_categories.find(category);
if(it == m_categories.end())
{
return {};
}
else
{
return it->second;
}
}
absl::optional< absl::Duration >
PublisherScheduler::getDefault() const
{
util::Lock l(&m_mutex);
if(m_defaultInterval == absl::Duration())
{
return {};
}
else
{
return m_defaultInterval;
}
}
std::vector< std::pair< const Category *, absl::Duration > >
PublisherScheduler::getAll() const
{
util::Lock l(&m_mutex);
std::vector< std::pair< const Category *, absl::Duration > > result;
result.reserve(m_categories.size());
std::copy(m_categories.begin(), m_categories.end(),
std::back_inserter(result));
return result;
}
} // namespace metrics
} // namespace llarp